
NuttX Online
Workshop

• August 15-16 2020

Porting the Rust libstd to
NuttX/Cortex-M4F and

prototyping a simple web
server

Sony Home Entertainment & Sound
Products Inc.

Yoshinori.Sugino@sony.com

NuttX Online Workshop

About me
•Software engineer

• Digital voice recorder
• Digital music player WALKMAN

•Rust.Tokyo 2019 speaker
•My mentor: Masayuki Ishikawa

• NuttX contributor
• Arm TechCon 2016, Embedded Linux Conference 2017-2019, NuttX 2019

speaker

GitHub profile picture

NuttX Online Workshop

Agenda
• What is Rust?

• Objectives

• Using the Rust standard library (libstd) on NuttX
• Using println! macro

• Using std::thread

• Using std::net

• Using std::fs

NuttX Online Workshop

What is Rust?
• Open-source systems programming language

• Compiled language

• focuses on speed, memory safety and parallelism

• Sponsored by Mozilla

• "most loved programming language“
• in the Stack Overflow Developer Survey for 5 years in a row

https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved

NuttX Online Workshop

Objectives
•Using Rust in embedded systems

•Not bare metal, but on RTOS
•Using the Rust standard library (libstd)

• println!
• std::vec
• std::thread
• std::net
• std::fs

•Identifying issues for using Rust on NuttX
•By running examples on NuttX

• TRPL(The Rust Programming Language book) examples
• RBE(Rust by Example) examples

•NuttX + STM32F4Discovery

NuttX Online Workshop

Approaches
•Link Rust library and built-in application
•Create .a file from Rust code

•Link the .a file and existing built-in application
•Use the hello application this time

•NOTE
•Chose the way that changes the source code as little as possible

•Perhaps, it’s not the best way

•This prototyping was done around April 2019

NuttX Online Workshop

Create custom target
•Create custom target based on thumbv7em-none-eabi

•Thought that there were many changes needed to add a definition for NuttX

•Decided to reuse the settings for Linux which seems most similar to NuttX
• "os": "linux"
• "target-family": "unix“

NuttX Online Workshop

Create built-in application
•Modify the hello application
•Call Rust function from the hello application

•Stack size: 8192 bytes

•Create a Rust library that says hello
• println!(“Hello, world!!”);

• channel: nightly

• crate-type = ["staticlib"]

• Dependencies: libstd

NuttX Online Workshop

Build errors
•Many undefined reference errors
•Remove unnecessary sections with a linker option --gc-sections

•Each function was placed in a separate .text section

•Change symbol names with objcopy --redefine-sym
• __errno_location

• __xpg_strerror_r

•Implemented by myself
• posix_memalign

• pthread_condattr_setclock defined this function but did not fully
implemented

NuttX Online Workshop

Runtime problems
•Building succeeded but …

1. stack overflow occurs

2. The hello application hung

•An application that uses write!() works successfully

NuttX Online Workshop

Stack overflow occurs
•Investigation
•Set a watchpoint
at the end of stack

•Strangely, __aeabi_memcpy4
was called recursively

NuttX Online Workshop

Stack overflow occurs
•Investigation
•I found the following issue on GitHub

•According to the report, it seems to be a linker mis-optimization

NuttX Online Workshop

Stack overflow occurs
•Workaround

NuttX Online Workshop

The hello application hung
•Investigation
•The hello application hung on a semaphore

•Hung in pthread_mutex_lock()

NuttX Online Workshop

The hello application hung
•Investigation
•Confirm correct behaviors on Linux

1. libstd on NuttX should work in the same way as on Linux because the same
libstd is used on NuttX

2. Set breakpoints at pthread_mutex_init() and pthread_mutex_lock()

3. I found that pthread_mutex_init() was not called before pthread_mutex_lock()
was called

NuttX Online Workshop

The hello application hung
•Investigation
•It turned out that PTHREAD_MUTEX_INITIALIZER is used instead of
pthread_mutex_init()

NuttX Online Workshop

The hello application hung
•Investigation
•NuttX and Rust have different PTHREAD_MUTEX_INITIALIZER data
structures

NuttX
include/pthread.h

Rust bindings to libc
src/unix/notbsd/linux/mod.rs

NuttX Online Workshop

The hello application hung
•Solution
•Modify the same value as defined in NuttX

• Modify __SIZEOF_PTHREAD_MUTEX_T to 12

• Modify PTHREAD_MUTEX_INITIALIZER to
[0, 0, 0, 0, 1, 0, 0xff, 0xff, 1, 0, 0, 0]

NuttX Online Workshop

The hello application run with no errors
•Finally it worked

•But memory leak occurs

NuttX Online Workshop

Comparison with write!()
•Memory leak does not occur by the application using write!()

NuttX Online Workshop

Memory leaks using println! macro
•Investigation

1. Set breakpoints at malloc and free

2. Cannot find free for thread_local! macro

3. Memory leak occurred in the simple application using thread_local! macro

4. It turned out that pthread_key_create in libc of NuttX ignores the destructor
argument

•Solution

•Support the destructor pthread_key_create

•Result

•Memory leak at first execution decreased slightly
•1264 bytes leak → 1200 bytes leak

•The amount of memory leak at second execution does not change
•96 bytes leak

NuttX Online Workshop

Memory leaks using println! macro
•Investigation

1. Notice that pthread_key_create is not called and there are uninitialized
variables at second execution

2. It turned out that "global variables are initialized only once when the
system powers up†".
†https://cwiki.apache.org/confluence/display/NUTTX/Linux+Processes+vs+NuttX+Tasks

•Solution
•Insert the start code for the built-in application

•.data, .bss, .ctors, .init_array, .dtors, .fini_array, …

•Result
•Memory leaks 1200 bytes each time
•But no memory leaks for a simple application that uses thread-local
variables

NuttX Online Workshop

Memory leaks using println! macro
•Investigation

1. Found 1024 bytes malloc for struct Lazy

2. It turned out that cleanup function for struct Lazy was not called

•Solution
•Call the cleanup function just before end of process

•Result
•Memory leaks do not occur by using println!(“Hello, world!”)

NuttX Online Workshop

std::thread
• Undefined reference errors occur when std::thread is used

• sigaltstack

• munmap

• pthread_self

• pthread_getattr_np

• pthread_attr_getguardsize

• dlsym

NuttX Online Workshop

Undefined reference errors occur when std::thread
is used

•Investigation
• Read the source code of the Rust standard library (libstd)

• Undefined reference symbols are found in functions for stack
overflow detection

•Solution
• Remove the functions because it takes a lot of time to implement

•Result
•Link without any errors

•But runtime error occurs when thread is created

NuttX Online Workshop

Runtime error occurs when thread is created
•Investigation
•Return ENOMEM in the memory allocation for stack

•Solution
•Modify stack size from 2MiB to 4KiB

•Result
•Thread and channel examples in RBE worked

•But memory leak occurs → under investigation

NuttX Online Workshop

std::net
• Try to run a simple single thread web server written in TRPL

1. socket()
2. bind()
3. listen()
4. accept()
5. read()/write()
6. close()

• Change to RNDIS configuration in order to use USB Ethernet

• Remove the accept4() that caused undefined reference error
• Use accept() instead

https://doc.rust-lang.org/book/ch20-01-single-threaded.html

NuttX Online Workshop

Linking succeeded but runtime error occurs
• Investigation

• Error occurs in std::net::TcpListener::bind()

• SOCK_CLOEXEC is used (Linux-specific, NuttX does not support)

• Solution
• Return EINVAL when unsupported types(SOCK_*) is used

• Result
• Error still occurs in std::net::TcpListener::bind()

NuttX Online Workshop

std::net::TcpListener::bind() caused runtime errors
• Investigation

• FIOCLEX is used, but NuttX does not support

• Workaround
• Ignore FIOCLEX

• Tried to use fcntl with F_SETFD and FD_CLOEXEC instead, but
F_SETFD is not implemented

• Result
• Error still occurs in std::net::TcpListener::bind()

NuttX Online Workshop

std::net::TcpListener::bind() caused runtime errors
• Investigation

• Some constants such as SOL_SOCKET and SO_REUSEADDR have
different value between NuttX and Rust

• Solution
• Change to the same value as defined in NuttX

• Result
• std::net::TcpListener::bind() succeeded

• can read requests when wget runs

• But a response with HTML does not reach host PC

NuttX Online Workshop

A response with HTML does not reach the host PC
• Workaround

• Disable CONFIG_NET_TCP_WRITE_BUFFERS of NuttX

• Result
• 200 OK

• Response was received but wget did not exit

NuttX Online Workshop

Response was received but wget did not exit
• Investigation

• Response was received
but wget did not exit

• FIN packet is not sent
when a socket is closed

• Workaround
• Add ‘Connection: close’ and

‘Content-Length’ to response header
• (Or SO_LINGER is set)

• Result
• wget exits successfully
• Firefox shows successfully

NuttX Online Workshop

The network stack bugs were fixed
• Fixed by the following commit

• A response reaches host PC if CONFIG_NET_TCP_WRITE_BUFFERS
is enabled

• FIN packet is sent without SO_LINGER

https://bitbucket.org/nuttx/nuttx/commits/ed9fe700242909851b6ef4049aa8fea13fa67699

NuttX Online Workshop

std::fs
• Try to use std::fs

• Read a file and show its contents

• Error and solution
• Undefined reference errors occur

•Modify open64 and fstat64 to open and fstat

• Remove a function using F_SETFD
•that is not supported on NuttX

•Result
•Can read a file without any memory leaks

NuttX Online Workshop

Run a multithreaded web server
• Try to run a multithreaded web server based on TRPL

implementation
• Reading from romfs ("/rom/hello.html")

• Run without any errors and Firefox shows successfully

NuttX Online Workshop

Issues and future work
•Issues about using the Rust standard library on NuttX
•Different constants and different signatures

•It cannot be detected at link time

•Memory leaks

•Unimplemented features on NuttX

•Network stack bugs

•Future work
•Investigate memory leak when std::thread is used

NuttX Online
Workshop

Thank you!

