Tickless Round Robin
4 fitbit | Vlad Urziceanu

©2020 Fitbit, Inc. All rights reserved. Proprietary & Confidential.

Constraints at
Fitbit

Memory
Power

Time critical tasks - sensor
acquisition, algorithms

Many user facing tasks that
need to share the cpu fairly

i fitbit

Tick or tickless?

What is a tick?

*A periodic timer » wakes the system to check for
pending events.

*The timer ISR has two jobs:

. Handle expired timers.
. Handle the scheduling policy.

*Timer period is a trade-off between precision and
power efficiency.

s fitbit

Introducing tickless

*Replace periodic timer = one-shot timer dynamically
set to fire on the next event.

°ldle system = timer doesn’t need to trigger at all.

*System can respond to events rapidly when needed
and sleep in idle periods.

s fitbit

The ticks in tickless

Tick T L] T

Running :l:. E:. :l:.

Align expiration with ticks

Allow random expiration

Running 1 [. 1 [. [[.

Idle] | 1 [] | []

| | | | | | |
Time 44 20 30 40 50 60
(ms)

—I I_ . - Tasks running at 20ms interval

- fitbit

https://app.lucidchart.com/documents/edit/b7efd985-f0dd-44f7-9add-d398984aad40/0&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back?callback=close&name=slides&callback_type=back&v=1275&s=1234.9724409448818

Scheduling Policy

e fitbit ©2020 Fitbit, Inc. All rights reserved.

NuttX Scheduling Policies

*Preemptive RTOS = priority is strictly enforced.
*Tasks with equal priority execute FIFO.

*Round robin policy available.

s fitbit

Round Robin Policy
*Each task is assigned a RR_INTERVAL timeslice.

*When the time slice elapses, swap the task with the next
task of equal priority.

s fitbit

Round Robin in Action

Tick 1 2 3 4

12

RR_INTERVAL=1

4 fitbit.

https://app.lucidchart.com/documents/edit/9795bb76-22d2-4fc1-9d8d-4105e05167c0/0&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back?callback=close&name=slides&callback_type=back&v=365&s=1366.765748031496

What if we get preempted?

Tick 1 2 3 4

IRQ

T3 |

T2 E — P Pre-emption
: RR_INTERVAL = 1

1 [] [] []

4 fitbit.

https://app.lucidchart.com/documents/edit/e518c96d-9d6d-4571-8d34-1f2735712b71/0&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back?callback=close&name=slides&callback_type=back&v=1215&s=1555.2000511349656

Limitations

*Tasks are guaranteed to execute at least
RR_INTERVAL, but...

*Tasks waiting in line can potentially wait indefinitely to
be scheduled.

s fitbit

Can we do better?

*Naive solution = swap task when it gets preempted.

*Unfair to the interrupted task = it doesn’t get to
complete its time slice.

*Better solution =+ carry remaining slice when task
resumes.

s fitbit

Can we do better?

*Only restore time slice on:

. Up__blocktask.
. round-robin swap.

*On task suspend:

. Subtract elapsed ticks from timeslice.
. If preempted - save system time in tcb.

°On task resume - check if same tick:

. If not during preemption tick - decrement timeslice.
. Execute round-robin swap if timeslice is depleted.

s fitbit

Preemption Behaviour

IRQ

T3

12

: : —» Pre-emption
h RR_INTERVAL =1

T1

|

4 fitbit.

https://app.lucidchart.com/documents/edit/11743ce0-f5fb-479c-bc8b-ff9c05c9c094/0&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back?callback=close&name=slides&callback_type=back&v=395&s=1555.0669272114912

A small compromise

*Solution requires updating all calls to
sched resume_scheduler in architecture code.

*Move round robin swap from task resume to task suspend.

s fitbit

Pros
*Tasks are guaranteed to execute at least RR_INTERVAL.

*The task that was preempted keeps its time slice if it is able
to resume during the same tick.

*The task waiting next in line has to wait no more than
RR_INTERVAL + 1tick until it gets scheduled.

s fitbit

Round Robin and Tickless

*NuttX doesn’t re-evaluate timer on context switch.
*Maximum timer period must always be RR_INTERVAL.
*RR_INTERVAL becomes a faux tick.

*RR preemption handling not possible.

s fitbit

Solution
*Drop the upper bound of the timer interval.

*Reassess alarm after context switches.

s fitbit

Obstacles
*Reassess triggers wdog timer processing.

*Ticks elapsed when setting up the context switch = reassess
updates the wrong task.

s fitbit

Pros
*CPU can sleep indefinitely when idle.

*Tasks that do not use RR policy not interrupted every
RR_INTERVAL.

*Dynamic round robin time slicing.

s fitbit

Cons

*Reassessing the timer on context switch is a heavy
operation.

*Implementation needs SCHED_TICKLESS_ALARM.

s fitbit

Future Improvements

*Move RR slicing to dedicate HW timer to mitigate the penalty of
reassessing.

*Start RR slicing only when equal priority tasks are unblocked.

s fitbit

How do we measure scheduler performance?
*Power consumption = -0.45% active duty cycle.
*Round robin swap rate =» +95% swap rate.

*Ul responsiveness =» noticeable improvement.

- fitbit

Conclusion

*Preemptive strict priority scheduling meets real time
processing requirements.

*Round robin policy increases fairness of same priority task
scheduling.

*Tickless scheduling allows us to meet power requirements.

s fitbit

THANK YOU

.§§§. fltblt ©2020 Fitbit, Inc. All rights reserved.

