
©2020 Fitbit, Inc. All rights reserved. Proprietary & Confidential.

Tickless Round Robin
| Vlad Urziceanu

©2020 Fitbit, Inc. All rights reserved.

Constraints at
Fitbit

• Memory

• Power

• Time critical tasks - sensor
acquisition, algorithms

• Many user facing tasks that
need to share the cpu fairly

Product
Slide

©2020 Fitbit, Inc. All rights reserved.

Tick or tickless?

©2020 Fitbit, Inc. All rights reserved.

What is a tick?

•A periodic timer → wakes the system to check for
pending events.

•The timer ISR has two jobs:
• Handle expired timers.
• Handle the scheduling policy.

•Timer period is a trade-off between precision and
power efficiency.

©2020 Fitbit, Inc. All rights reserved.

Introducing tickless

•Replace periodic timer → one-shot timer dynamically
set to fire on the next event.

•Idle system → timer doesn’t need to trigger at all.

•System can respond to events rapidly when needed
and sleep in idle periods.

©2020 Fitbit, Inc. All rights reserved.

The ticks in tickless

https://app.lucidchart.com/documents/edit/b7efd985-f0dd-44f7-9add-d398984aad40/0&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back?callback=close&name=slides&callback_type=back&v=1275&s=1234.9724409448818

©2020 Fitbit, Inc. All rights reserved.

Scheduling Policy

©2020 Fitbit, Inc. All rights reserved.

NuttX Scheduling Policies

•Preemptive RTOS → priority is strictly enforced.

•Tasks with equal priority execute FIFO.

•Round robin policy available.

©2020 Fitbit, Inc. All rights reserved.

Round Robin Policy

•Each task is assigned a RR_INTERVAL timeslice.

•When the time slice elapses, swap the task with the next
task of equal priority.

©2020 Fitbit, Inc. All rights reserved.

Round Robin in Action

Column 1 Column 2 Column 3 Column 4 Column 5

https://app.lucidchart.com/documents/edit/9795bb76-22d2-4fc1-9d8d-4105e05167c0/0&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back?callback=close&name=slides&callback_type=back&v=365&s=1366.765748031496

©2020 Fitbit, Inc. All rights reserved.

What if we get preempted?

Column 1 Column 2 Column 3 Column 4 Column 5

https://app.lucidchart.com/documents/edit/e518c96d-9d6d-4571-8d34-1f2735712b71/0&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back?callback=close&name=slides&callback_type=back&v=1215&s=1555.2000511349656

©2020 Fitbit, Inc. All rights reserved.

Limitations

•Tasks are guaranteed to execute at least
RR_INTERVAL, but…

•Tasks waiting in line can potentially wait indefinitely to
be scheduled.

©2020 Fitbit, Inc. All rights reserved.

Can we do better?

•Naive solution → swap task when it gets preempted.

•Unfair to the interrupted task → it doesn’t get to
complete its time slice.

•Better solution → carry remaining slice when task
resumes.

©2020 Fitbit, Inc. All rights reserved.

Can we do better?

•Only restore time slice on:
• up_blocktask.
• round-robin swap.

•On task suspend:
• Subtract elapsed ticks from timeslice.
• If preempted - save system time in tcb.

•On task resume - check if same tick:
• If not during preemption tick - decrement timeslice.
• Execute round-robin swap if timeslice is depleted.

©2020 Fitbit, Inc. All rights reserved.

Preemption Behaviour

Column 1 Column 2 Column 3 Column 4 Column 5

https://app.lucidchart.com/documents/edit/11743ce0-f5fb-479c-bc8b-ff9c05c9c094/0&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back&name=slides&callback_type=back?callback=close&name=slides&callback_type=back&v=395&s=1555.0669272114912

©2020 Fitbit, Inc. All rights reserved.

A small compromise

•Solution requires updating all calls to
sched_resume_scheduler in architecture code.

•Move round robin swap from task resume to task suspend.

©2020 Fitbit, Inc. All rights reserved.

Pros

•Tasks are guaranteed to execute at least RR_INTERVAL.

•The task that was preempted keeps its time slice if it is able
to resume during the same tick.

•The task waiting next in line has to wait no more than
RR_INTERVAL + 1 tick until it gets scheduled.

©2020 Fitbit, Inc. All rights reserved.

Round Robin and Tickless

•NuttX doesn’t re-evaluate timer on context switch.

•Maximum timer period must always be RR_INTERVAL.

•RR_INTERVAL becomes a faux tick.

•RR preemption handling not possible.

©2020 Fitbit, Inc. All rights reserved.

Solution

•Drop the upper bound of the timer interval.

•Reassess alarm after context switches.

©2020 Fitbit, Inc. All rights reserved.

Obstacles

•Reassess triggers wdog timer processing.

•Ticks elapsed when setting up the context switch → reassess
updates the wrong task.

©2020 Fitbit, Inc. All rights reserved.

Pros

•CPU can sleep indefinitely when idle.

•Tasks that do not use RR policy not interrupted every
RR_INTERVAL.

•Dynamic round robin time slicing.

©2020 Fitbit, Inc. All rights reserved.

Cons

•Reassessing the timer on context switch is a heavy
operation.

•Implementation needs SCHED_TICKLESS_ALARM.

©2020 Fitbit, Inc. All rights reserved.

Future Improvements

•Move RR slicing to dedicate HW timer to mitigate the penalty of
reassessing.

•Start RR slicing only when equal priority tasks are unblocked.

©2020 Fitbit, Inc. All rights reserved.

How do we measure scheduler performance?

•Power consumption → -0.45% active duty cycle.

•Round robin swap rate → +95% swap rate.

•UI responsiveness → noticeable improvement.

©2020 Fitbit, Inc. All rights reserved.

Conclusion

•Preemptive strict priority scheduling meets real time
processing requirements.

•Round robin policy increases fairness of same priority task
scheduling.

•Tickless scheduling allows us to meet power requirements.

THANK YOU

©2020 Fitbit, Inc. All rights reserved.

