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Constraints at
Fitbit

Memory
Power

Time critical tasks - sensor
acquisition, algorithms

Many user facing tasks that
need to share the cpu fairly
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Tick or tickless?




What is a tick?

*A periodic timer » wakes the system to check for
pending events.

*The timer ISR has two jobs:

. Handle expired timers.
. Handle the scheduling policy.

*Timer period is a trade-off between precision and
power efficiency.
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Introducing tickless

*Replace periodic timer = one-shot timer dynamically
set to fire on the next event.

°ldle system = timer doesn’t need to trigger at all.

*System can respond to events rapidly when needed
and sleep in idle periods.
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The ticks in tickless
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Scheduling Policy
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NuttX Scheduling Policies

*Preemptive RTOS = priority is strictly enforced.
*Tasks with equal priority execute FIFO.

*Round robin policy available.
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Round Robin Policy
*Each task is assigned a RR_INTERVAL timeslice.

*When the time slice elapses, swap the task with the next
task of equal priority.
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Round Robin in Action
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What if we get preempted?
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Limitations

*Tasks are guaranteed to execute at least
RR_INTERVAL, but...

*Tasks waiting in line can potentially wait indefinitely to
be scheduled.
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Can we do better?

*Naive solution = swap task when it gets preempted.

*Unfair to the interrupted task = it doesn’t get to
complete its time slice.

*Better solution =+ carry remaining slice when task
resumes.
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Can we do better?

*Only restore time slice on:

. Up__blocktask.
. round-robin swap.

*On task suspend:

. Subtract elapsed ticks from timeslice.
. If preempted - save system time in tcb.

°On task resume - check if same tick:

. If not during preemption tick - decrement timeslice.
. Execute round-robin swap if timeslice is depleted.
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Preemption Behaviour
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A small compromise

*Solution requires updating all calls to
sched resume_scheduler in architecture code.

*Move round robin swap from task resume to task suspend.
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Pros
*Tasks are guaranteed to execute at least RR_INTERVAL.

*The task that was preempted keeps its time slice if it is able
to resume during the same tick.

*The task waiting next in line has to wait no more than
RR_INTERVAL + 1tick until it gets scheduled.
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Round Robin and Tickless

*NuttX doesn’t re-evaluate timer on context switch.
*Maximum timer period must always be RR_INTERVAL.
*RR_INTERVAL becomes a faux tick.

*RR preemption handling not possible.
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Solution
*Drop the upper bound of the timer interval.

*Reassess alarm after context switches.
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Obstacles
*Reassess triggers wdog timer processing.

*Ticks elapsed when setting up the context switch = reassess
updates the wrong task.
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Pros
*CPU can sleep indefinitely when idle.

*Tasks that do not use RR policy not interrupted every
RR_INTERVAL.

*Dynamic round robin time slicing.
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Cons

*Reassessing the timer on context switch is a heavy
operation.

*Implementation needs SCHED_TICKLESS_ALARM.
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Future Improvements

*Move RR slicing to dedicate HW timer to mitigate the penalty of
reassessing.

*Start RR slicing only when equal priority tasks are unblocked.
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How do we measure scheduler performance?
*Power consumption = -0.45% active duty cycle.
*Round robin swap rate =» +95% swap rate.

*Ul responsiveness =» noticeable improvement.
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Conclusion

*Preemptive strict priority scheduling meets real time
processing requirements.

*Round robin policy increases fairness of same priority task
scheduling.

*Tickless scheduling allows us to meet power requirements.
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