..
A .
.

van Matesica ot
| VZ .0:0
S talk | lulian-Ra
tF
it of Smar
A bit o

Agenda

What is SmartFS? How does it work?

* File system check

* Bad blocks management
* Partial mapping

* Logical defragmentation
* Sector Cache

e Conclusion

Why

* Hardware constraints (limited RAM)
(Partial Mapping)

* Reliable storage for high complexity applications
(Bad Blocks Management)

* Flat build -> memory corruptions -> data corruptions
(File System Check)

* Deterministic peak RAM usage
(Sector Cache)

What is SmartFS? How does it work?

« SmartFS stands for Sector ;|
Mapped Allocation for Really Tiny E E SmartFs (fles/directories) 5 E
flash R :

* Designed to be used with NOR [RWQ AFI :
flashes : E

. Built—in W ear L eveIIin g :: Smart-MTD (sectors management, wear-levelling) Z:

« Configurable sector size : :
(25 6, 1K, 4K) E JRead/Write page Erase block ‘ :

« Uses a 1:1 mapping between """""""""""""""""""""""""""" Hh ““““““““““““““““““““““““““““
Logical and Physical sectors |

S s .

SmartFS layer - How does it work?

» Afile/directory is a linked list of logical sectors

Directory data/ | File atxt

Next sector

Entry: a.txt, 300, F

Entry: bixt, 1000, F

File system check

* The system always boots up with a valid file system
* Corrupted files are removed at boot-up (power loss/crashes)

..

It can detect: | Lo
* Invalid sector and chain headers I Nextcocton E—
® File Ioops E Sector data Sector data Sector data

* Cross-file loops

...

File a.txt £ File b.txt
§ Next sector Next sector —J’_’ Next sector J i E Next sector Next sector Next sector

1
Sector data Sector data Sector data i | Sector data Sector data Sector data

Bad blocks management - 1

| Bad blocks structure
* User data integrity and | e o Nextsecor | |
device reliability represent | Bodblocks sector0 Bad blocks sector Sad ks secor N |

top priorities for Fitbit A

..

1014 bytes

* NOR flashes do go bad [P SRSORORONSUOUUSURUU. Lo..ioo SOOI 5
(or come bad from factory) Sectordsta | byte© | byte1 | bye2 byte 1013

° Uses CRC for detection Byte 0 bit 0 blt2 bit3 bit4 bit5 |bit6 bit7 S::;r s?;gr
(read after write) N A
V%W W w u a
phy | phy | phy | phy | phy | phy | phy | phy phy
Physlcal flash sector |sector sector sector | sector | sector |sector sector e sector

sectors

Bad blocks management - 2

* |t reuses sector read/write/allocate functions
* The granularity is configurable, smallest one being 1 sector (1KB)

 The head of the list is stored in the SmartFS Signature Sector (superblock)

| SmartFs Signature ' Bad blocks structure
. Sector (superblock) | H
e [I e I (R EEEs >
format[4] |
Next sector Next sector ~ -------- d Next sector
badblocks_flags " | Bad blocks sector 0 Bad blocks sector 1 Bad blocks sector N | |
badblocks_head

Partial mapping - 1

* 1.1 mapping between logical sectors and physical sectors

* This information is stored in an array (needs RAM)
uintl6 t mapl[];
map[log sector] = phy sector;

 8MB flash would need 16KB of RAM just for this map (sectors of 1KB)

Logical
sector

Physical
sector

Partial mapping - 2

Why allocate memory to access all 8MB if we only use 2MB in
normal usage?

(BMB are used for staging during firmware update)

Partial mapping - 3

* Possible solution: 2 partitions — 2MB and 6MB
(disadvantages: increased wear and discontinuity)

* Better solution: map just enough logical sectors to cover 2MB

2MB visible to user land

NSttt othmaiote >
Logical 0 1 2 2047
sector
Phiysicel 0 1 2 3 4 5 8191
sector
U >

8MB physical flash

Partial mapping — Good & Bad

Advantages:
« Partial mapping can be enabled/disabled per partition
* Wear leveling still uses the entire 8MB space
* Only 4KB of RAM needed for logical-physical mapping
 We've saved 5% from the entire RAM (*Charge 3)
* Switching between modes at runtime:

- partial mapping (2MB)

- full mapping (8MB)

Disadvantages:
* Some files may not be accessible from partial mapping

Partial mapping — New problem

* File ‘a.txt’ is created in full mapping
* In partial mapping (2MB) only logical sectors
0...2047 can be accessed

* Q: What if we need to access ‘a.txt’ in Partial Mapping?

Logical sectors

e e)

| Flle atxt

prias v A BRESN

100 —j—b 200 ’J-b 3000 —I} 400
Next sector Next sector Next sector Next sector

Logical defragmentation

Replaces logical sectors >=2048 with logical sectors <2048

Two steps:

1. Exchange logical sectors — 1:1 logical sectors exchange

2. Clean-up — free up space

File "x.txt' before
Logical Defragmentation

..

Logical
Address 0 2048 3000 4000 8192
Space
Before " I A
After v v v
Logical
Address 0 3 8192
Space
A é A
File 'xtxt' after

Logical Defragmentation

Logical defragmentation — Exchange

File needed in Partial Mapping

File user_settings.dat : ' File user_settings.dat
3000 4000 —I» 5000 : : 300 —/.» 400 —I» 500
Next sector Next sector Next sector E Next sector Next sector Next sector
____________ M A
------------ T e, e e L L L L L P e
300 400 500 : : 3000 _J—» 4000 —I» 5000
Next sector Next sector Next sector E Next sector Next sector Next sector
i File new_firmware.bin i File new_firmware.bin

Logical defragmentation — Clean-up

* Move all files that are not needed outside of partial mapping
* Partial mapping range: 0 — 2047 (2MB)
* Full mapping range: O — 8191 (8MB)

Sector Cache

: | Why Sector Cache?
T — - Previously, each open file would allocate
1KB of RAM (current sector buffer)
 — e.g.: 15 open files == 15KB of RAM

3 Sector Cache]
' (LRU Policy, fixed number of sectors) |

A

* Peak RAM usage couldn’t be controlled

. Features of Sector Cache;
- - Smart-MTD (sectors management, wear-levelling) - .
| . * LRU Cache Policy
j RescWte page .+ Fixed RAM usage, configurable
| ﬂ Also acts as a read cache

Flash]

.~ *» Addresses concurrency issues

i fitbit

Conclusion

* Fitbit’s top priorities: user data integrity, device reliability:
FS Check to ensure that we always boot to a sane file system
Bad blocks management

* RAM optimizations:
Partial mapping (2MB/8MB), freed up 5% from the entire RAM
Sector Cache — deterministic peak RAM usage

 Downside — increased complexity:
Logical defragmentation + clean-up
Increased code space usage (ROM)

THANK YOU

