OOOOOOOOOOOOOOOOOOO

cRTOS: A Linux-compatible
compounded RTOS
based on
NuttX, Linux and Jailhouse

Chung-Fan Yang
Fixstars Corporation
chungfan.yang@fixstars.com

August 15-16 2020

NuttX Online Workshop

- ® Lt s »

mailto:chungfan.yang@fixstars.com

About the Speaker

* Chung-Fan Yang
 Creator of the x86-64 port of NuttX
* From Taiwan, working in Japan

« Software Engineer at Fixstars Corporation
* https://www.fixstars.com/en/

« Software / Hardware
based optimization, acceleration

* Hobby:
« Embedded system
« Poking around system software

OOOOOOOOOOOOOOOOOOO

NuttX Online Workshop

https://www.fixstars.com/en/

<L.‘§ NuttX Online Workshop

Outline

* Introduction — What is cRTOS?
* Implementation

« Handling System calls

« Performance of cRTOS

* Demo

e [sSsues & Discussions

4{.} NuttX Online Workshop

Academic publication

* Developed during my years in University of Tsukuba, Japan

* “Obtaining hard real-time performance and rich Linux features
In a compounded real-time operating system by a partitioning
hypervisor. *

« Chung-Fan Yang and Yasushi Shinjo. 2020.

* In Proceedings of the 16th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments

* DOI: https://doi.org/10.1145/3381052.3381323

APACHE

OOOOOOOOOOOOOOOOOO

Introduction
What’'s cRTOS?
NuttX Online
Workshop

4{.} NuttX Online Workshop

What is cRTOS(compounded RTOS)

1. Run a General-Purpose OS (GPOS) and
a Real-Time OS (RTOS) together with a hypervisor

2. Snap them together as one big OS.

3. Run processes on this big OS.

« Have access to both the benefits of the 2 OSs
* Rich features of GPOS and Real-timeness of RTOS

4. User benefits from this easily programable real-time
environment

System Overview

* Normal realm — Linux
« Manages Non-RT devices
 Soft real-time IRQ path

» Real-time realm — NuttX
« Manages RT devices
« Hard real-time IRQ path

* Access Linux features
with shared memory

APACHE

OOOOOOOOOOOOOOOOOO

NuttX Online Workshop

Compounded RTOS

Real-time realm
NuttX

Normal realm
Linux

Non-RT RT
Corel (2{---|N Core
PIC ' PIC |

| eice \- WY ovee -

PIC: programmable interrupt controller

4{.} NuttX Online Workshop

2 different viewpoints on benefits

« Benefits of cRTOS against other real-time extensions for Linux
« Hard real-time Is possible
* No patching Linux kernel — very maintainable
* Program real-time with Linux APl ! — very easy to use

» Benefits of the Linux extension for NuttX
(which is a part of cRTOS)
 Let you execute (any) Linux programs in NuttX
* No re-compiling, editing binary
» Glibc and other libraries is usable
e X window GUIs!

4@(NuttX Online Workshop

Concept of Rich real-time process

Compounded RTOS

Written with POSIX APl and threads
Executes in NuttX and Linux
RT and non-RT threads

r

. |
| NonRT/ RT ||
 RT threads: K g g g % |
- Contain RT algorithms | " "3
* Interact with NuttX and RT devices] 3 —/
« E.g. Timer, CAN bus, SPI, 12C \
Remote

* Non-RT threads: RT
s . Modules syscall I

* Interact with Linux and Non-RT devices syscall sysca

* Use rich features of GPOS Linux kernel NuttX Kernel

« E.g. X window, TCP/IP

NuttX Online Workshop

Shadow process

« Each rich RT process has a
shadow process.

* In the Linux as user process
» 1:1 thread mapping.

Shared memory area

Shadow process

« Executes Linux system calls user Sections of
. text | .data | .bss | heap tack Shadow Drocess
on behalf of Rich RT process. A B
0x40000000
° Memory text | .data | .bss | heap :C::L RT-Process
« Shared physical memory. 0x400000 OXF300000

0x0
« Same memory address space.

 The same data at the
same address in both process.

4@(NuttX Online Workshop

Shadow process

« Each rich RT process has a
shadow process.

* In the Linux as user process
» 1:1 thread mapping.

Shared memory area

Shadow process

« Executes Linux system calls user Sections of
. . text | .data | .bss | heap tack Shadow Drocess
In behalf of Rich RT process. 230 .
0x40000000
° Memory text | .data | .bss | heap ::::L RT-Process
« Shared physical memory. 0x400000 OXF300000

0x0
« Same memory address space.

 The same data at the
same address in both process.

Very important attribute,

// APACHE will come back later

APACHE

OOOOOOOOOOOOOOOOOO

plementation
POSIX is great

NuttX Online
Workshop

4{.} NuttX Online Workshop

Jailhouse - Creating 2 realms

 Current implementation used Jailhouse hypervisorl!
* Like Xen a Linux based Type-I hypervisor
 Linux only as the bootloader and management interface
 Partitioning hypervisor
« Hardware resources are not shared.
* No scheduling on vCPUs

 Static memory allocation, might be shared
« PCI-E device passthrough

 Easily achieves hard real-time and feasible to runs RTOSs

[1] https://github.com/siemens/jailhouse

4L.‘§ NuttX Online Workshop

Linux — Normal realm with rich features

Well, it is the standard Linux everyone knows, nothing special.
No patching
Only 2 kernel modules for shared memory access

¢ NuttX Online Workshop

NuttX — Real-time realm

* Runs as another guest on Jailhouse
* Runs Linux program binaries

* Exploited the fact that

* NuttX is POSIX confirming, so is Linux (mostly).
* On source level, portable *nix program should work out of box.

« System call set are very similar, main barrier is the ABI and VM
(and the non-standard system calls which Linux had screwed up).

* Provide a Linux compatibility layer, Whoosh,
Linux program binaries should work.

¢ NuttX Online Workshop

NuttX — Real-time realm

* Runs as another guest on Jailhouse
* Runs Linux program binaries

* Exploited the fact that

* NuttX is POSIX confirming, so is Linux (mostly).
* On source level, portable *nix program should work out of box.

« System call set are very similar, main barrier is the ABI and VM
(and the non-standard system calls which Linux had screwed up).

* Provide a Linux compatibility layer, Whoosh,
Linux program binaries should work.

Development Goal

<ﬁ§ NuttX Online Workshop

X86-64 NuttX

* By product of cRTOS, already merged to mainline
* Try it and help report bugs!

« Jailhouse only support x86-64 and AArch64
« And | happened to only have an x86-64 machine for development

* To make a Linux ABI compatible NuttX on x86-64
» Ported NuttX to x86-64 with SystemV ABI
* 50% done by compiler (Calling convention)
* 50% hand coded (System call handler, XCP register set, FPU setting)

4{.} NuttX Online Workshop

NuttX for Jailhouse

 Also a by product of cRTOS, already merged to mainline
« Help testing!

* |t can be used separately.

« Shared memory driver is implemented
* Not yet merged.
« PCI driver framework need to go first.
* GPL license issue, need full rewrite.

¢ NuttX Online Workshop

System Overview

Compounded RTOS

Normal realm Real-time realm
Linux NuttX

Non-RT
Corel |2]--- N Core
PIC ' PIC |
o \\l\
Device Device

APACH E PIC: programmable interrupt controller

OOOOOOOOOOOOOOOOOO

APACHE

OOOOOOOOOOOOOOOOOO

Handling
System calls

Linux compatibility Layer

NuttX Online

‘ﬁf Workshop

4{.} NuttX Online Workshop

Extending NuttX for Linux style process

* NuttX has some degree of protected or kernel build.
 But quite far from a Linux compatible environment

* For simplicity,
flat build is chosen and extended to support Linux style process.
* Virtual memory supported is implemented.
* Like Linux, kernel is in mapped to high memory
* Process occupies lower memory
 Dynamic memory mapping supported is added (mmap / munmap)
* No actual protection between kernel and user space memory

Y NuttX Online Workshop
Extending NuttX for Linux system calls

 Impractical to implement every Linux system call in NuttX
* The existing system calls in NuttX cover a good variety of real-time usage

* We need a way to get over those
« Nasty Linux specified system calls
« System calls inessential to real-time

* We try to delegate those not important system calls
to side-by-side Linux
« Gives an excellent coverage
« Trade-off between hard and soft real-time

<ﬁ§ NuttX Online Workshop

System call handler

* Reuse the system call reservation mechanism
« Lower 512 system calls are reserved for Linux system calls
 Effectively moved NuttX system calls to 512~

* For 512~ calls, continues to function as-is
« Native NuttX apps continues to function properly

e For 0~512 calls, either

 In Nuttx — Real-time system call
» Delegating to side-by -side Linux — Remote system call

* The selection of delegating or not is seamless,
user code uses standard system call exception interface.

¢ NuttX Online Workshop

Real-time system calls

« Real-time related system call will be handled locally in NuttX.
« Deterministic execution
 Higher timing stabllity

 Access to local facilities
e Synchronization: semaphore, shared memory, etc.

e Etc.

* Access to RT devices
* open, read, write, etc.

NuttX Online Workshop

Remote system calls (RCSs)

« RSCs provide access to Linux features seamlessly
« Access to non-RT devices, file systems, credentials

» Delegated system calls to Linux as messages via a queue.

» Executed by corresponding shadow process

« For handling pointers, shadow process shared same memory space

Normal realm

I

@ System call

Real-time realm

(On behalf

Shared memory

of RT process)

@ System call

@ System call number
& Arguments & IPI

@ Return values
& IPI

¢ NuttX Online Workshop

Overlay FS

* Open system call try NuttX files first before trying Linux files
- Effectively produce an Overlay FS

User program

* The returning file descriptors is segregated, allow multiplexing
* 0~4096: Linux files
* 4096~ : NuttX files

OOOOOOOOOOOOOOOOOOOO

¢ NuttX Online Workshop

Extending NuttX system calls

* Nonetheless, some of the system calls

* Doesn'’t exist in NuttX
« Cannot be simply delegated to Linux because of semantics problem

* For example:
* Process / threading related: clone, fork, arch_prctl, etc.
« Memory management: mmap, munmap, etc.
e SystemV IPC: shmem, etc.

 Timer: alarm, timer_create, etc.

* Implemented those system calls
(A lot less comparing to all of Linux system calls)

» Most of them are stubs and wrappers

¢ NuttX Online Workshop

Dual system calls

 Among the extended system calls, some are dual system calls
« Executed in both NuttX and Linux
* Synchronize the attributes between rich real-time and shadow

Process.
« Memory map
 1:1 thread relationship

* Clone, fork, exit, mmap, munmap, exec
are implemented as dual system calls

4{»} NuttX Online Workshop
Starting arich real-time process

« A daemon executes on Nuttx

A loader program

* On Linux side
» Makes a remote exec call to the daemon on NuttX side

* The daemon creates a seed rich real-time process

* The rich process calls exec system call to start the user appointed
program.

APACHE

OOOOOOOOOOOOOOOOOO

Performance

First direct comparison of
NuttX and Linux ever?

NuttX Online

<ﬁ§ Workshop

<ﬁ§ NuttX Online Workshop

Hardware Software
CPU Intel Xeon 2650 v4 Jailhouse version v0.9.1
@ 2.2Ghz 10C/10T Linux kernel version v4.9.84
RAM 32GB DDR4 Nuttx version V7.2
Configurations
Vanilla Linux PREEMPT RT
Proposed cRTOS / w vanilla Linux Proposed cRTOS / w PREEMPT_RT Linux
Xenomai 3.0

<ﬁ§ NuttX Online Workshop

Cyclictest

 Cyclictest:
« Athread set a timer and the timer expires.
» Measures the elapsed time for accuracy.

« All configurations used the same binary,
« Xenomai required a modified version of cyclictest.

« Parameter for cyclictest:
« SCHED_FIFO, priority 90, interval 1ms, loop 100k times

« STREAM benchmark suite was used as extra load for hardware.

¢ NuttX Online Workshop

Cyclictest

* The performance of real-time realm(NuttX) was the best
« Latency: 4 us max / 4 us jitter

* Performance became better with PREEMPT_RT

. . . P RT
L Vanilla Linux X Xenomai 3 (golapé)lzsl\?lcli'lg RTO4S- Nuttx)

P PREEMPT RT Proposed cRTOS

LN (vanilla Linux + Nuttx)
L - *:
’=
f. r| -——
33 x| —p————
O .
S LNt Smaller is better
: PN |- 100000 measurements
//APACHE 0 20 40 60 80 100 120 140
Latency (us)

<ﬁ§ NuttX Online Workshop

/O Interrupt latency

* We measured the latency of a hardware interrupt.
A serial device was attached to each configuration.

* The system was programed to generate an output upon an
Input Is received.

* The gap between 2 pulses were measured with an oscilloscope.

System under
test

Signal generator

APACHE —

Oscilloscope

Serial device

<L.‘§ NuttX Online Workshop

/O Interrupt latency

* The performance of cRTOS beats all other solution
 Latency: 10 us max / 2 us jitter

* cRTOS’s performance became better with PREEMPT _RT

Proposed cRTOS

“ .
Xenomai 3 (PREEMPT_RT + Nuttx)

L Vanilla Linux

P Proposed cRTOS
PREEMPT_RT LN~ \/2nilla Linux + Nuttx)

- L A —*——
Sg P —ee
O X ——————l
B9 LN - (> Smaller is better
—~ PN 'a | | 1000 measurements
0 10 20 30 40 50 60

Latency (us)

<L.‘§ NuttX Online Workshop

System call latency

« Tested with original syscall micro-benchmark from Lmbench.

« Real-time system calls are faster than native Linux system calls.
 vs PREEMPT _RT: over 4 times faster

 Remote system calls are quite slow

Table 1. The maximum latency of various system calls.
Measured by Lmbench in microseconds.

Environment getpid read write open and close
PREEMPT _RT native 0.306 0.406 0.338 2.23
Xenomai 3 0.456 1.14 1.07 4.16
Real-time system call 0.059 0.088 0.083 0.445
Remote system call 27.7 27.0 56.3

OFTWARE FOUNDATION

/ APACHE

<L.‘§ NuttX Online Workshop

X window Applications in Nuttx!

Lxardoscope 0.95

1
= g
= gh()st.script"
vim Ristretto Ghost script

Xterm /wdash Image magick Ixardoscope

2%:25 ._ gedit @

Emacs Gnome terminal Gedit Firefox

APACHE

OOOOOOOOOOOOOOOOOO

NuttX Online

Bé Workshop

APACHE

OOOOOOOOOOOOOOOOOO

Issues &
Discussions

NuttX Online

<ﬁ§ Workshop

Y NuttX Online Workshop

License Issues

« GPL2 and BSD licensed code exist In current source tree.

» Jailhouse’s share memory driver
 Ported from Linux (which is GPL2, of course)
« Rewrite is required, but how much is enough?

* Linux system call interface headers, a.k.a. UAPI headers
« Contains system call related C struct, enum, MARCO definitions.
* Required to parse and translate flags and structure into NuttX form.
« GPL2 with “user program” exemptions, but we are not a “user program”
In Linux!
« Will a rewrite will save us?

NuttX Online Workshop

Future work

 Contributions are welcome
* Require more people to test this on more boards and applications

 Porting to AArch64?
(Jailhouse and Linux is available, so it is very possible)
« Current maintained out of mainline

« Might make its way into the mainline

* Prove such model is practical in use and beneficial for NuttX
community

 |f the license Issues are settled

4{3(NuttX Online Workshop

Source Code:

EFIKSTHHT

Speed up your Business

* Hosted on the Github page of Fixstars
* https://github.com/fixstars/cCRTOS

« Ported to Linux 5.4, Nuttx 9.1, Jailhouse 0.12
* Open tickets if you find any issues!

FFFFFFFFFFFFFFFFFFF

https://github.com/fixstars/cRTOS

APACHE

OOOOOOOOOOOOOOOOOO

Thank youl!

Questions?

chungfan.yang@fixstars.com
Or the nuttx.event forum

NuttX Online
Workshop

v FsTiny &

Speed up your Business

4ﬁ§

mailto:chungfan.yang@fixstars.com
nuttx.event

