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About the Speaker

• Chung-Fan Yang

• Creator of the x86-64 port of NuttX

• From Taiwan, working in Japan

• Software Engineer at Fixstars Corporation 
• https://www.fixstars.com/en/

• Software / Hardware 
based optimization, acceleration

• Hobby: 
• Embedded system

• Poking around system software

https://www.fixstars.com/en/
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Outline

• Introduction – What is cRTOS?

• Implementation

• Handling System calls

• Performance of cRTOS

• Demo

• Issues & Discussions
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Academic publication 

• Developed during my years in University of Tsukuba, Japan

• “Obtaining hard real-time performance and rich Linux features 

in a compounded real-time operating system by a partitioning 

hypervisor. “

• Chung-Fan Yang and Yasushi Shinjo. 2020.

• In Proceedings of the 16th ACM SIGPLAN/SIGOPS International 

Conference on Virtual Execution Environments

• DOI: https://doi.org/10.1145/3381052.3381323
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Introduction
What’s cRTOS?
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What is cRTOS(compounded RTOS)

1. Run a General-Purpose OS (GPOS) and 

a Real-Time OS (RTOS) together with a hypervisor

2. Snap them together as one big OS.

3. Run processes on this big OS.

• Have access to both the benefits of the 2 OSs

• Rich features of GPOS and Real-timeness of RTOS

4. User benefits from this easily programable real-time 

environment
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System Overview

• Normal realm – Linux

• Manages Non-RT devices

• Soft real-time IRQ path 

• Real-time realm – NuttX

• Manages RT devices

• Hard real-time IRQ path

• Access Linux features 

with shared memory

Real-time realm
NuttX

Partitioning Hypervisor

Normal realm
Linux

PIC: programmable interrupt controller

Compounded RTOS
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2 different viewpoints on benefits

• Benefits of cRTOS against other real-time extensions for Linux
• Hard real-time is possible

• No patching Linux kernel → very maintainable

• Program real-time with Linux API ! → very easy to use

• Benefits of the Linux extension for NuttＸ
(which is a part of cRTOS)

• Let you execute (any) Linux programs in NuttX

• No re-compiling, editing binary

• Glibc and other libraries is usable

• X window GUIs!
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Concept of Rich real-time process

• Written with POSIX API and threads

• Executes in NuttX and Linux

• RT and non-RT threads

• RT threads: 
• Contain RT algorithms 

• Interact with NuttX and RT devices

• E.g. Timer, CAN bus, SPI, I2C

• Non-RT threads: 
• Interact with Linux and Non-RT devices

• Use rich features of GPOS

• E.g. X window, TCP/IP
Partitioning Hypervisor

NuttxLinux

Linux
syscall

RT
syscall

Rich RT Process

Remote
syscall

NuttX KernelLinux kernel

Shadow
Porcess

Compounded RTOS

Kernel 
Modules

NonRT

....

RT

..
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Shadow process

• Each rich RT process has a 

shadow process.

• In the Linux as user process

• 1:1 thread mapping.

• Executes Linux system calls 

on behalf of Rich RT process.

• Memory

• Shared physical memory.

• Same memory address space.

• The same data at the 

same address in both process.

Shadow process

.text
Sections of 

Shadow process

0x40000000

Shared memory area

RT-Process

.data .bss heap
user 
stack

0x0
0x400000

heap
user 
stack

0xF800000

.text .data .bss
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Shadow process

• Each rich RT process has a 

shadow process.

• In the Linux as user process

• 1:1 thread mapping.

• Executes Linux system calls 

in behalf of Rich RT process.

• Memory

• Shared physical memory.

• Same memory address space.

• The same data at the 

same address in both process.

Shadow process

.text
Sections of 

Shadow process

0x40000000

Shared memory area

RT-Process

.data .bss heap
user 
stack

0x0
0x400000

heap
user 
stack

0xF800000

.text .data .bss

Very important attribute, 

will come back later
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Implementation
POSIX is great
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Jailhouse - Creating 2 realms

• Current implementation used Jailhouse hypervisor[1]

• Like Xen a Linux based Type-I hypervisor

• Linux only as the bootloader and management interface

• Partitioning hypervisor

• Hardware resources are not shared.

• No scheduling on vCPUs

• Static memory allocation, might be shared

• PCI-E device passthrough 

• Easily achieves hard real-time and feasible to runs RTOSs

[1] https://github.com/siemens/jailhouse
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Linux – Normal realm with rich features

Well, it is the standard Linux everyone knows, nothing special.
No patching

Only 2 kernel modules for shared memory access
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NuttX – Real-time realm

• Runs as another guest on Jailhouse

• Runs Linux program binaries

• Exploited the fact that
• NuttX is POSIX confirming, so is Linux (mostly).

• On source level, portable *nix program should work out of box.

• System call set are very similar, main barrier is the ABI and VM
(and the non-standard system calls which Linux had screwed up).

• Provide a Linux compatibility layer, Whoosh, 
Linux program binaries should work.
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NuttX – Real-time realm

• Runs as another guest on Jailhouse

• Runs Linux program binaries

• Exploited the fact that
• NuttX is POSIX confirming, so is Linux (mostly).

• On source level, portable *nix program should work out of box.

• System call set are very similar, main barrier is the ABI and VM
(and the non-standard system calls which Linux had screwed up).

• Provide a Linux compatibility layer, Whoosh, 
Linux program binaries should work.

Development Goal
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X86-64 NuttX

• By product of cRTOS, already merged to mainline

• Try it and help report bugs!

• Jailhouse only support x86-64 and AArch64

• And I happened to only have an x86-64 machine for development

• To make a Linux ABI compatible NuttX on x86-64

• Ported NuttX to x86-64 with SystemV ABI

• 50% done by compiler (Calling convention)

• 50% hand coded (System call handler, XCP register set, FPU setting)
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NuttX for Jailhouse

• Also a by product of cRTOS, already merged to mainline

• Help testing!

• It can be used separately.

• Shared memory driver is implemented

• Not yet merged.

• PCI driver framework need to go first.

• GPL license issue, need full rewrite.
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System Overview

Real-time realm
NuttX

Partitioning Hypervisor

Normal realm
Linux

PIC: programmable interrupt controller

Compounded RTOS
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Handling 
System calls

Linux compatibility Layer
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Extending NuttX for Linux style process

• NuttX has some degree of protected or kernel build.

• But quite far from a Linux compatible environment

• For simplicity, 

flat build is chosen and extended to support Linux style process.

• Virtual memory supported is implemented.

• Like Linux, kernel is in mapped to high memory

• Process occupies lower memory

• Dynamic memory mapping supported is added (mmap / munmap)

• No actual protection between kernel and user space memory
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Extending NuttX for Linux system calls

• Impractical to implement every Linux system call in NuttX

• The existing system calls in NuttX cover a good variety of real-time usage

• We need a way to get over those 

• Nasty Linux specified system calls

• System calls inessential to real-time

• We try to delegate those not important system calls 

to side-by-side Linux

• Gives an excellent coverage

• Trade-off between hard and soft real-time
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System call handler

• Reuse the system call reservation mechanism
• Lower 512 system calls are reserved for Linux system calls

• Effectively moved NuttX system calls to 512~

• For 512~ calls, continues to function as-is
• Native NuttX apps continues to function properly

• For 0~512 calls, either
• In Nuttx → Real-time system call

• Delegating to side-by -side Linux → Remote system call

• The selection of delegating or not is seamless, 
user code uses standard system call exception interface.
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Real-time system calls

• Real-time related system call will be handled locally in NuttX.

• Deterministic execution

• Higher timing stability

• Access to local facilities
• Synchronization:  semaphore, shared memory, etc.
• Etc.

• Access to RT devices
• open, read, write, etc.
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Remote system calls (RCSs)

• RSCs provide access to Linux features seamlessly

• Access to non-RT devices, file systems, credentials

• Delegated system calls to Linux as messages via a queue.

• Executed by corresponding shadow process

• For handling pointers, shadow process shared same memory space

NuttX

Kernel

Shared memory
RT 

process

Normal realm Real-time realm

① System call

Linux 

Kernel

③ System call

(On behalf 

of RT process)

② System call number

& Arguments & IPI

④ Return values

& IPI

⑤ ReturnShadow 

process

Kernel

Module
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Overlay FS

• Open system call try NuttX files first before trying Linux files

• Effectively produce an Overlay FS

• The returning file descriptors is segregated, allow multiplexing

• 0~4096: Linux files

• 4096~ : NuttX files

Linux Files

NuttX Files

User program
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Extending NuttX system calls

• Nonetheless, some of the system calls 

• Doesn’t exist in NuttX

• Cannot be simply delegated to Linux because of semantics problem

• For example:

• Process / threading related: clone, fork, arch_prctl, etc.

• Memory management: mmap, munmap, etc.

• SystemV IPC: shmem, etc.

• Timer: alarm, timer_create, etc.

• Implemented those system calls

(A lot less comparing to all of Linux system calls)

• Most of them are stubs and wrappers
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Dual system calls

• Among the extended system calls, some are dual system calls

• Executed in both NuttX and Linux

• Synchronize the attributes between rich real-time and shadow 

process.

• Memory map

• 1:1 thread relationship

• Clone, fork, exit, mmap, munmap, exec
are implemented as dual system calls
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Starting a rich real-time process

• A daemon executes on Nuttx

• A loader program 

• On Linux side

• Makes a remote exec call to the daemon on NuttX side

• The daemon creates a seed rich real-time process

• The rich process calls exec system call to start the user appointed 

program.
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Performance
First direct comparison of 

NuttX and Linux ever?
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Environment

CPU Intel Xeon 2650 v4 

@ 2.2Ghz 10C/10T

RAM 32GB DDR4

Hardware Software

Jailhouse version v0.9.1

Linux kernel version v4.9.84

Nuttx version v7.2

Configurations

Vanilla Linux PREEMPT_RT

Proposed cRTOS / w vanilla Linux Proposed cRTOS / w PREEMPT_RT Linux

Xenomai 3.0
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Cyclictest

• Cyclictest:
• A thread set a timer and the timer expires.

• Measures the elapsed time for accuracy.

• All configurations used the same binary, 
• Xenomai required a modified version of cyclictest.

• Parameter for cyclictest:
• SCHED_FIFO, priority 90, interval 1ms, loop 100k times

• STREAM benchmark suite was used as extra load for hardware.



NuttX Online Workshop

Cyclictest

• The performance of real-time realm(NuttX) was the best

• Latency: 4 us max / 4 us jitter

• Performance became better with PREEMPT_RT

Smaller is better

100000 measurements
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I/O Interrupt latency

• We measured the latency of a hardware interrupt.

• A serial device was attached to each configuration.

• The system was programed to generate an output upon an 

input is received.

• The gap between 2 pulses were measured with an oscilloscope.

Serial device
Signal generator Oscilloscope

System under 
test
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I/O Interrupt latency

• The performance of cRTOS beats all other solution

• Latency: 10 us max / 2 us jitter

• cRTOS’s performance became better with PREEMPT_RT

Smaller is better

1000 measurements
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System call latency

• Tested with original syscall micro-benchmark from Lmbench.

• Real-time system calls are faster than native Linux system calls.

• vs PREEMPT_RT: over 4 times faster

• Remote system calls are quite slow
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X window Applications in Nuttx!

FirefoxGeditGnome terminalEmacs

vim Ristretto

Image magick

Ghost script

Xterm /w dash lxardoscope
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Issues & 
Discussions
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License Issues

• GPL2 and BSD licensed code exist in current source tree.

• Jailhouse’s share memory driver
• Ported from Linux (which is GPL2, of course)

• Rewrite is required, but how much is enough?

• Linux system call interface headers, a.k.a. UAPI headers
• Contains system call related C struct, enum, MARCO definitions.

• Required to parse and translate flags and structure into NuttX form.

• GPL2 with “user program” exemptions, but we are not a “user program” 
in Linux!

• Will a rewrite will save us?
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Future work

• Contributions are welcome

• Require more people to test this on more boards and applications

• Porting to AArch64? 

(Jailhouse and Linux is available, so it is very possible)

• Current maintained out of mainline

• Might make its way into the mainline

• Prove such model is practical in use and beneficial for NuttX

community

• If the license issues are settled
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Source Code:

• Hosted on the Github page of Fixstars

• https://github.com/fixstars/cRTOS

• Ported to Linux 5.4, Nuttx 9.1, Jailhouse 0.12

• Open tickets if you find any issues!

https://github.com/fixstars/cRTOS
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Thank you!
Questions?

chungfan.yang@fixstars.com

Or the nuttx.event forum

mailto:chungfan.yang@fixstars.com
nuttx.event


NuttX Online 
Workshop

Thank you!


