
NuttX Online Workshop

cRTOS: A Linux-compatible

compounded RTOS

based on

NuttX, Linux and Jailhouse

Chung-Fan Yang

Fixstars Corporation

August 15-16 2020

chungfan.yang@fixstars.com

mailto:chungfan.yang@fixstars.com

NuttX Online Workshop

About the Speaker

• Chung-Fan Yang

• Creator of the x86-64 port of NuttX

• From Taiwan, working in Japan

• Software Engineer at Fixstars Corporation
• https://www.fixstars.com/en/

• Software / Hardware
based optimization, acceleration

• Hobby:
• Embedded system

• Poking around system software

https://www.fixstars.com/en/

NuttX Online Workshop

Outline

• Introduction – What is cRTOS?

• Implementation

• Handling System calls

• Performance of cRTOS

• Demo

• Issues & Discussions

NuttX Online Workshop

Academic publication

• Developed during my years in University of Tsukuba, Japan

• “Obtaining hard real-time performance and rich Linux features

in a compounded real-time operating system by a partitioning

hypervisor. “

• Chung-Fan Yang and Yasushi Shinjo. 2020.

• In Proceedings of the 16th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments

• DOI: https://doi.org/10.1145/3381052.3381323

NuttX Online
Workshop

Introduction
What’s cRTOS?

NuttX Online Workshop

What is cRTOS(compounded RTOS)

1. Run a General-Purpose OS (GPOS) and

a Real-Time OS (RTOS) together with a hypervisor

2. Snap them together as one big OS.

3. Run processes on this big OS.

• Have access to both the benefits of the 2 OSs

• Rich features of GPOS and Real-timeness of RTOS

4. User benefits from this easily programable real-time

environment

NuttX Online Workshop

System Overview

• Normal realm – Linux

• Manages Non-RT devices

• Soft real-time IRQ path

• Real-time realm – NuttX

• Manages RT devices

• Hard real-time IRQ path

• Access Linux features

with shared memory

Real-time realm
NuttX

Partitioning Hypervisor

Normal realm
Linux

PIC: programmable interrupt controller

Compounded RTOS

Share Memory

RT

Core
PIC

RT

Device

RT

Device

RT

Device

RT

Device
…

Core N
PICPIC

Core 2
PIC

Non-RT

Core 1 …

RT

Device

RT

Device

RT

Device

Non-RT

Device
…

NuttX Online Workshop

2 different viewpoints on benefits

• Benefits of cRTOS against other real-time extensions for Linux
• Hard real-time is possible

• No patching Linux kernel → very maintainable

• Program real-time with Linux API ! → very easy to use

• Benefits of the Linux extension for NuttＸ
(which is a part of cRTOS)

• Let you execute (any) Linux programs in NuttX

• No re-compiling, editing binary

• Glibc and other libraries is usable

• X window GUIs!

NuttX Online Workshop

Concept of Rich real-time process

• Written with POSIX API and threads

• Executes in NuttX and Linux

• RT and non-RT threads

• RT threads:
• Contain RT algorithms

• Interact with NuttX and RT devices

• E.g. Timer, CAN bus, SPI, I2C

• Non-RT threads:
• Interact with Linux and Non-RT devices

• Use rich features of GPOS

• E.g. X window, TCP/IP
Partitioning Hypervisor

NuttxLinux

Linux
syscall

RT
syscall

Rich RT Process

Remote
syscall

NuttX KernelLinux kernel

Shadow
Porcess

Compounded RTOS

Kernel
Modules

NonRT

....

RT

..

NuttX Online Workshop

Shadow process

• Each rich RT process has a

shadow process.

• In the Linux as user process

• 1:1 thread mapping.

• Executes Linux system calls

on behalf of Rich RT process.

• Memory

• Shared physical memory.

• Same memory address space.

• The same data at the

same address in both process.

Shadow process

.text
Sections of

Shadow process

0x40000000

Shared memory area

RT-Process

.data .bss heap
user
stack

0x0
0x400000

heap
user
stack

0xF800000

.text .data .bss

NuttX Online Workshop

Shadow process

• Each rich RT process has a

shadow process.

• In the Linux as user process

• 1:1 thread mapping.

• Executes Linux system calls

in behalf of Rich RT process.

• Memory

• Shared physical memory.

• Same memory address space.

• The same data at the

same address in both process.

Shadow process

.text
Sections of

Shadow process

0x40000000

Shared memory area

RT-Process

.data .bss heap
user
stack

0x0
0x400000

heap
user
stack

0xF800000

.text .data .bss

Very important attribute,

will come back later

NuttX Online
Workshop

Implementation
POSIX is great

NuttX Online Workshop

Jailhouse - Creating 2 realms

• Current implementation used Jailhouse hypervisor[1]

• Like Xen a Linux based Type-I hypervisor

• Linux only as the bootloader and management interface

• Partitioning hypervisor

• Hardware resources are not shared.

• No scheduling on vCPUs

• Static memory allocation, might be shared

• PCI-E device passthrough

• Easily achieves hard real-time and feasible to runs RTOSs

[1] https://github.com/siemens/jailhouse

NuttX Online Workshop

Linux – Normal realm with rich features

Well, it is the standard Linux everyone knows, nothing special.
No patching

Only 2 kernel modules for shared memory access

NuttX Online Workshop

NuttX – Real-time realm

• Runs as another guest on Jailhouse

• Runs Linux program binaries

• Exploited the fact that
• NuttX is POSIX confirming, so is Linux (mostly).

• On source level, portable *nix program should work out of box.

• System call set are very similar, main barrier is the ABI and VM
(and the non-standard system calls which Linux had screwed up).

• Provide a Linux compatibility layer, Whoosh,
Linux program binaries should work.

NuttX Online Workshop

NuttX – Real-time realm

• Runs as another guest on Jailhouse

• Runs Linux program binaries

• Exploited the fact that
• NuttX is POSIX confirming, so is Linux (mostly).

• On source level, portable *nix program should work out of box.

• System call set are very similar, main barrier is the ABI and VM
(and the non-standard system calls which Linux had screwed up).

• Provide a Linux compatibility layer, Whoosh,
Linux program binaries should work.

Development Goal

NuttX Online Workshop

X86-64 NuttX

• By product of cRTOS, already merged to mainline

• Try it and help report bugs!

• Jailhouse only support x86-64 and AArch64

• And I happened to only have an x86-64 machine for development

• To make a Linux ABI compatible NuttX on x86-64

• Ported NuttX to x86-64 with SystemV ABI

• 50% done by compiler (Calling convention)

• 50% hand coded (System call handler, XCP register set, FPU setting)

NuttX Online Workshop

NuttX for Jailhouse

• Also a by product of cRTOS, already merged to mainline

• Help testing!

• It can be used separately.

• Shared memory driver is implemented

• Not yet merged.

• PCI driver framework need to go first.

• GPL license issue, need full rewrite.

NuttX Online Workshop

System Overview

Real-time realm
NuttX

Partitioning Hypervisor

Normal realm
Linux

PIC: programmable interrupt controller

Compounded RTOS

Share Memory

RT

Core
PIC

RT

Device

RT

Device

RT

Device

RT

Device
…

Core N
PICPIC

Core 2
PIC

Non-RT

Core 1 …

RT

Device

RT

Device

RT

Device

Non-RT

Device
…

NuttX Online
Workshop

Handling
System calls

Linux compatibility Layer

NuttX Online Workshop

Extending NuttX for Linux style process

• NuttX has some degree of protected or kernel build.

• But quite far from a Linux compatible environment

• For simplicity,

flat build is chosen and extended to support Linux style process.

• Virtual memory supported is implemented.

• Like Linux, kernel is in mapped to high memory

• Process occupies lower memory

• Dynamic memory mapping supported is added (mmap / munmap)

• No actual protection between kernel and user space memory

NuttX Online Workshop

Extending NuttX for Linux system calls

• Impractical to implement every Linux system call in NuttX

• The existing system calls in NuttX cover a good variety of real-time usage

• We need a way to get over those

• Nasty Linux specified system calls

• System calls inessential to real-time

• We try to delegate those not important system calls

to side-by-side Linux

• Gives an excellent coverage

• Trade-off between hard and soft real-time

NuttX Online Workshop

System call handler

• Reuse the system call reservation mechanism
• Lower 512 system calls are reserved for Linux system calls

• Effectively moved NuttX system calls to 512~

• For 512~ calls, continues to function as-is
• Native NuttX apps continues to function properly

• For 0~512 calls, either
• In Nuttx → Real-time system call

• Delegating to side-by -side Linux → Remote system call

• The selection of delegating or not is seamless,
user code uses standard system call exception interface.

NuttX Online Workshop

Real-time system calls

• Real-time related system call will be handled locally in NuttX.

• Deterministic execution

• Higher timing stability

• Access to local facilities
• Synchronization: semaphore, shared memory, etc.
• Etc.

• Access to RT devices
• open, read, write, etc.

NuttX Online Workshop

Remote system calls (RCSs)

• RSCs provide access to Linux features seamlessly

• Access to non-RT devices, file systems, credentials

• Delegated system calls to Linux as messages via a queue.

• Executed by corresponding shadow process

• For handling pointers, shadow process shared same memory space

NuttX

Kernel

Shared memory
RT

process

Normal realm Real-time realm

① System call

Linux

Kernel

③ System call

(On behalf

of RT process)

② System call number

& Arguments & IPI

④ Return values

& IPI

⑤ ReturnShadow

process

Kernel

Module

NuttX Online Workshop

Overlay FS

• Open system call try NuttX files first before trying Linux files

• Effectively produce an Overlay FS

• The returning file descriptors is segregated, allow multiplexing

• 0~4096: Linux files

• 4096~ : NuttX files

Linux Files

NuttX Files

User program

NuttX Online Workshop

Extending NuttX system calls

• Nonetheless, some of the system calls

• Doesn’t exist in NuttX

• Cannot be simply delegated to Linux because of semantics problem

• For example:

• Process / threading related: clone, fork, arch_prctl, etc.

• Memory management: mmap, munmap, etc.

• SystemV IPC: shmem, etc.

• Timer: alarm, timer_create, etc.

• Implemented those system calls

(A lot less comparing to all of Linux system calls)

• Most of them are stubs and wrappers

NuttX Online Workshop

Dual system calls

• Among the extended system calls, some are dual system calls

• Executed in both NuttX and Linux

• Synchronize the attributes between rich real-time and shadow

process.

• Memory map

• 1:1 thread relationship

• Clone, fork, exit, mmap, munmap, exec
are implemented as dual system calls

NuttX Online Workshop

Starting a rich real-time process

• A daemon executes on Nuttx

• A loader program

• On Linux side

• Makes a remote exec call to the daemon on NuttX side

• The daemon creates a seed rich real-time process

• The rich process calls exec system call to start the user appointed

program.

NuttX Online
Workshop

Performance
First direct comparison of

NuttX and Linux ever?

NuttX Online Workshop

Environment

CPU Intel Xeon 2650 v4

@ 2.2Ghz 10C/10T

RAM 32GB DDR4

Hardware Software

Jailhouse version v0.9.1

Linux kernel version v4.9.84

Nuttx version v7.2

Configurations

Vanilla Linux PREEMPT_RT

Proposed cRTOS / w vanilla Linux Proposed cRTOS / w PREEMPT_RT Linux

Xenomai 3.0

NuttX Online Workshop

Cyclictest

• Cyclictest:
• A thread set a timer and the timer expires.

• Measures the elapsed time for accuracy.

• All configurations used the same binary,
• Xenomai required a modified version of cyclictest.

• Parameter for cyclictest:
• SCHED_FIFO, priority 90, interval 1ms, loop 100k times

• STREAM benchmark suite was used as extra load for hardware.

NuttX Online Workshop

Cyclictest

• The performance of real-time realm(NuttX) was the best

• Latency: 4 us max / 4 us jitter

• Performance became better with PREEMPT_RT

Smaller is better

100000 measurements

NuttX Online Workshop

I/O Interrupt latency

• We measured the latency of a hardware interrupt.

• A serial device was attached to each configuration.

• The system was programed to generate an output upon an

input is received.

• The gap between 2 pulses were measured with an oscilloscope.

Serial device
Signal generator Oscilloscope

System under
test

NuttX Online Workshop

I/O Interrupt latency

• The performance of cRTOS beats all other solution

• Latency: 10 us max / 2 us jitter

• cRTOS’s performance became better with PREEMPT_RT

Smaller is better

1000 measurements

NuttX Online Workshop

System call latency

• Tested with original syscall micro-benchmark from Lmbench.

• Real-time system calls are faster than native Linux system calls.

• vs PREEMPT_RT: over 4 times faster

• Remote system calls are quite slow

NuttX Online Workshop

X window Applications in Nuttx!

FirefoxGeditGnome terminalEmacs

vim Ristretto

Image magick

Ghost script

Xterm /w dash lxardoscope

NuttX Online
Workshop

Demo

NuttX Online
Workshop

Issues &
Discussions

NuttX Online Workshop

License Issues

• GPL2 and BSD licensed code exist in current source tree.

• Jailhouse’s share memory driver
• Ported from Linux (which is GPL2, of course)

• Rewrite is required, but how much is enough?

• Linux system call interface headers, a.k.a. UAPI headers
• Contains system call related C struct, enum, MARCO definitions.

• Required to parse and translate flags and structure into NuttX form.

• GPL2 with “user program” exemptions, but we are not a “user program”
in Linux!

• Will a rewrite will save us?

NuttX Online Workshop

Future work

• Contributions are welcome

• Require more people to test this on more boards and applications

• Porting to AArch64?

(Jailhouse and Linux is available, so it is very possible)

• Current maintained out of mainline

• Might make its way into the mainline

• Prove such model is practical in use and beneficial for NuttX

community

• If the license issues are settled

NuttX Online Workshop

Source Code:

• Hosted on the Github page of Fixstars

• https://github.com/fixstars/cRTOS

• Ported to Linux 5.4, Nuttx 9.1, Jailhouse 0.12

• Open tickets if you find any issues!

https://github.com/fixstars/cRTOS

NuttX Online
Workshop

NuttX Online
Workshop

Thank you!
Questions?

chungfan.yang@fixstars.com

Or the nuttx.event forum

mailto:chungfan.yang@fixstars.com
nuttx.event

NuttX Online
Workshop

Thank you!

