
Implementing a usrsock based
Wi-Fi driver on NuttX

Masayuki.Ishikawa@sony.com

Sony Home Entertainment & Sound Products Inc.

Senior Software Engineer

Background Image by SuguruYamamoto “The Rainbow Bridge” https://www.flickr.com/photos/116243018@N08/16241286031/

Implementing
a usrsock based

Wi-Fi driver on NuttX
Masayuki Ishikawa

Sony Home Entertainment & Sound
Products, Inc

About Me

2

Masayuki Ishikawa

Senior Software Engineer
at Sony Home Entertainment & Sound Products Inc.

Technical background
§ 3D Graphics, Home Networking, Internet-to-Home, Embedded Systems
Product development
§ Portable Media Player (Linux/Android)
§ Digital Voice Recorder, Music Player, Headphone (NuttX)
Public talks
§ Arm Techcon 2016, ELC2017NA, OpenIoT2018NA, NuttX2019, ELC2019NA/E

NW-A800

NW-ZX1

ICD-UX560 WF-SP900

Agenda

§ Hardware
§ Spresense + Telit GS2200M
§ STM32F4Discovery + Telit GS2200M
§ Read & Write transaction on SPI

§ Software
§ Architecture
§ What is usrsock?
§ Serial-To-Wi-Fi

§ Actual use-cases
§ Demo video

3

Hardware : Spresense + GS2200M

§ Spresense (main + extension)
§ Arm Cortex-M4F x 6 (up to 160MHz)
§ SRAM 1.5MB
§ microSDHC
§ SPI

§ High performance mode: up to 13.00 Mbps

§ Telit GS2200M *
§ Radio: 802.11b/g/n (2.4GHz only)
§ Voltage: VDDIO 1.8-3.3V, VIN3.3V
§ Interface**: UART/SPI (up to 10Mbps)/SDIO
§ Embedded TCP/IP stack

4

Spresense Main Board

microSD card

GS2200M

Spresense
Extension Board

USB-Serial : console +
firmware download

SWD

**Default interface is configured by firmware* You can buy the Wi-Fi board from chip1stop

Pin assignments

§ I/O voltage: 1.8V
§ Reset pin : UART2_RTS
§ IRQ pin : UART2_CTS *
§ Interface : SPI5

5

https://idy-design.com/product/is110b.html

*GPIO37 in GS2200M is assigned for IRQ. See also : 1VV0301396_GS2200M_HW_User_Guide_r0.pdf

Hardware : STM32F4Discovery + GS2200M

§ STM32F4Discovery
§ Arm Cortex-M4F (168MHz)
§ SRAM 128KB + 64KB (CCM)
§ microSD over SPI (SPI2 is assigned)

§ SDHCI can be used

§ Telit GS2200M
§ Radio: 802.11b/g/n (2.4GHz only)
§ Voltage: VDDIO3.3V, VIN3.3V
§ Interface: UART/SPI/SDIO
§ Embedded TCP/IP stack

6

STM32F4Discovery

microSD card

GS2200M

ST-LINK2: firmware download & debug

FT231X
serial
console

Pin assignments

§ FT231X to STM32F407
§ RXD : PA2 (USART2_TX)
§ TXD : PA3 (USART2_RX)

§ microSD to STM32F407
§ PIN2 (CD/D3) : PB12 (for chip select)
§ PIN5 (CLK) : PB13 (SPI2_SCK)
§ PIN3 (CMD) : PB15 (SPI2_MOSI)
§ PIN7 (D0) : PB14 (SPI2_MISO)

7

§ GS2200M to STM32F407
§ GPIO33 : PE5 (for chip select)
§ GPIO35 : PB3 (SPI3_SCK)
§ GPIO34 : PB5 (SPI3_MOSI)
§ GPIO36 : PB4 (SPI3_MISO)
§ GPIO37 : PD2 (for interrupt)
§ EXT_RTC_RESET_N : PE4 (for reset)
§ VDDIO : 3.3V

HI frame format on SPI (from MCU)*

8*See GS2200M-S2W-Adapter-Command-Reference-Guide_r3.0.pdf

HI frame format on SPI (from GS node)

9

Actual data length is set
when the class is
READ_RESPONSE_OK

Write transaction on SPI

§ Start with GPIO37=L
§ Send WRITE_REQUEST
§ Wait for GPIO37=H
§ Receive WRITE_RESPONSE
§ Send DATA_HEADER and

DATA

10

Read transaction on SPI

§ Start with GPIO37=H
§ Send READ_REQUEST
§ Wait for GPIO37=H
§ Receive READ_REPONSE
§ Receive DATA_HEADER

and DATA

11

Software architecture

12

Network applications

SPI

GS2200M

/dev/gs2200m/dev/usrsock

webserver gs2200m daemontelnetd

Interrupt

The latest NuttX upstream + Spresense

microSD

/dev/mmcsd0

SDHCI

DHCP client DNS client

kernel + driver

userland

NOTE: Though GS2200M supports high-level protocols such as HTTP(S)/MQTT, in this driver we only use low level.

Callback APIs

socket_request()
close_request()
....

context: gs2200m daemon

socket API

socket ()
close()
...

What is the usrsock ?

§ User-space networking stack API
§ User-space daemon and HAL provide NuttX networking features
§ This allows seamless integration of HW-provided TCP/IP stacks to NuttX

13

Serial-to-WiFi on GS2200M

§ The Serial-to-WiFi stack is used to
provide WiFi capability to any device
having a serial interface.

§ This approach offloads WLAN, TCP/IP
stack and network management
overhead to the WiFi chip, allowing a
small embedded host (for example an
MCU) to communicate with other hosts
on the network using a WiFi wireless
link.

§ The host processor can use serial
commands to configure the Serial-to-
WiFi Application and to create wireless
and network connections.

14

Serial-to-WiFi

NOTE: IP-to-Wi-Fi is also possible, if you build with SDK builder.

AT command examples (1/2)

15

AT command examples (2/2)

16

NOTE: AT+NCUDP is not used in the gs2200m driver

Actual sequence with example apps

§ Initialize GS2200M driver
§ Connect to Wi-Fi network
§ Run DHCP client *

§ BULK mode in UDP
§ CID (Connection Identifier)
§ Interrupt and work queue

§ Run wget command
§ BULK mode in TCP
§ TCP flow control

§ Run telnet daemon

17

Ubuntu 18.04

Spresense + GS2200M Wi-Fi

The internet

*NOTE: Need to disable DHCP client inside GS2200, because it conflicts.

Wi-Fi

Wi-Fi router
as access point

Driver initialization (1/2)

§ board_gs2200m_initialize()

§ Called vial board_app_initialize()

§ Change UART2 pins to GPIO

§ Change eMMC pins to SPI5

§ Call gs2200m_register()

18

§ gs2200m_register()

§ Call gs2200m_initialize()

§ Set SPI to mode1/8bits/10MHz

§ Reset and un-reset the module

§ Call lower->attach(gs2200m_irq, dev) to attach IRQ

Driver initialization (2/2)

§ gs2200m_start()
§ Wait for GPIO37 to High
§ Check boot message

§ Serial2WiFi App
§ Disable echo

§ ATE0
§ Activate RX

§ AT+WRXACTIVE=1
§ Set network interface to ‘UP’
§ Enable interrupt

19

Connect to Wi-Fi network

§ Disassociate
§ AT+WD

§ Set to STA mode
§ AT+WM=0

§ Disable DHCP client
§ AT+NDHCP=0

§ Set address *
§ AT+NSET=....

§ Get mac address info
§ AT+NMAC=?

§ Join the network
§ AT+WA=...

20*NOTE: AT command rejects to set address to “0.0.0.0”. I think this is a bug.

Run DHCP client (1/3)

§ Run DHCP client
§ nsh> renew eth0

§ Confirm the address with ifconfig
§ nsh> ifconfig

21

Run DHCP client(2/3)

§ socket() system call
§ socket_request() in gs2200m daemon is called to allocate usockid.
§ however, no driver call happens.

§ ioctl() system call
§ ioctl_request() in gs2200m daemon is called

§ This call is used for get/set interface info.
§ then call ioctl(..., GS2200M_IOC_IFREQ, ...)

§ sendto() system call
§ sendto_request() in gs2200m daemon is called
§ then call ioctl(..., GS2200M_IOC_SEND, ...)
§ In the gs2200m driver, start udp server to allocate CID. *
§ then send specified data as a bulk packet.

22* This might be tricky but in Serial-To-Wi-Fi, UDP client can only allocate a new CID for associated with destination.

DHCP client gs2200m daemon

/dev/usrsock /dev/gs2200m

GS2200M

Callback APIs

socket_request()
close_request()
connect_request()
sendto_request()
recvfrom_request()
....

Run DHCP client(3/3)

§ recvfrom() system call
§ recvfrom() is blocked until a new packet is received.
§ If a new packet arrives, gs2200m_irq() is called then gs2200m_irq_worker() is called.
§ In gs2200m_irq_worker(), it receive the new packet and post semaphore to notify userland.
§ recvfrom_request() in gs2200m daemon is called then call ioctl(..., GS2200M_IOC_RECV, ...)
§ In the gs2200m driver, copy the packet to caller’s buffer.
§ recvfrom() is unblocked and return to caller.

§ close() system call
§ close_request() in gs2200m daemon is called.
§ then call ioctl(..., GS2200M_ICO_CLOSE, ...)
§ In the gs2200m driver, issue AT+NCLOSE to deallocate the CID

23

CID (Connection Identifiers) in GS2200M

§ Once associated, the GS node supports instances of four types of network
entities: TCP client, TCP server, UDP client and UDP server.

§ Each client, or server, is associated with one or more of a possible 16
Connection Identifiers, where the CID is a single hexadecimal number.

§ More than one such entity can exist simultaneously; and a TCP server can
have multiple connections, each with its own CID.

24

BULK mode in UDP

25

Destination IP
address and port

Source IP address
and port

Interrupt and work queue

§ gs2200m_irq() : interrupt handler (top half)

§ Disable interrupt

§ Kick the work queue

§ gs2200m_irq_worker() : work queue handler (bottom half)

§ Receive a packet and if CID in the packet is valid, add it to the packet queue

§ If CONNECT packet is received (i.e. accept() should be unblocked), then validate the CID

§ If DISCONNECT packet is received (i.e. TCP passive close case), then invalidate the CID

§ If the packet is pushed to the queue, set POLLIN event to unblock poll() in gs2200m daemon

§ Enable interrupt

26* Normal AT command and response are handled in the caller’s thread without work queue by disabling interrupt

Run wget command (1/2)

§ Run wget command
§ nsh> wget http://...

§ Check the downloaded file
§ nsh> cat index.html

27

Run wget client (2/2)

§ Daemon & Driver sequence is similar to DHCP client case.
§ However, wget uses TCP (not UDP), so connect() system call and read() system calls are used

§ connect() system call
§ connect_request() in gs2200m daemon is called
§ then call ioctl(..., GS2200M_IOC_CONNECT, ...)
§ In the gs2200m driver, start TCP client in GS2200M and obtain a new CID

§ read() system call
§ read() is blocked until a new packet is received.
§ If a new packet is received, finally recvfrom_request() in gs2200m daemon is called
§ then call ioctl(..., GS2200M_IOC_RECV, ...)
§ In the gs2200m driver, copy packet (up to the specified length) to caller’s buffer.
§ If a packet still exists for the CID, then notify userland

28

BULK mode in TCP

29

TCP flow control

§ TCP flow control is needed to avoid out of
memory when receiving a large data
§ Currently TCP flow control commands for Serial-To-Wi-

Fi are not used

§ Instead, TCP flow control is done based on total
bulk packet size
§ If the total bulk packet size exceeds a threshold (e.g.

8KB), interrupt for GS2200 is disabled until the size is
less than the threshold.

30

0

1

2

pkt_q[cid]

f

Interrupt
enabled

Interrupt
disabled

Run telnet daemon (1/2)

§ On NuttX console
§ nsh> ifconfig
§ nsh> telnetd &

§ On Ubuntu
§ $ telnet 192.168.10.21
§ After logging into NuttX
§ nsh> uname –a
§ nsh> ps

31

Run telnet daemon (2/2)

§ Both DHCP client and wget command were UDP client and TCP client respectively.
§ However, telnet daemon is a TCP server program, so following system calls are newly used.

§ bind() system call
§ bind_request() in gs2200m daemon is called.
§ Then call ioctl(..., GS2200M_IOC_BIND, ...) to create a TCP server in GS2200M

§ listen() system call
§ listen_request() in gs2200m daemon is called but do nothing special.

§ accept() system call
§ accept_request() in gs2200m daemon is called with server’s CID
§ then call ioctl(..., GS2200M_IOC_ACCEPT,...) to accept connection
§ In the driver, remove the CONNECT packet

32

Demo videos

§ Spresense + GS2200M
§ Run gs2200m deamon to connect to AP
§ Run telnetd and logging in from PC
§ Run webserver and access from PC
§ Run nxplayer for audio streaming from PC
§ Run wget to receive a file from the Internet
§ Run a downloaded ELF app from PC

33

Ubuntu 18.04

Spresense + GS2200M

Wi-Fi

The internet

Access Point

Web browsing with Firefox

NuttX 9.1.0

Wi-Fi

34

Any Questions?

35

