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Agenda

§ Hardware
§ Spresense + Telit GS2200M
§ STM32F4Discovery + Telit GS2200M
§ Read & Write transaction on SPI

§ Software
§ Architecture
§ What is usrsock?
§ Serial-To-Wi-Fi

§ Actual use-cases
§ Demo video
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Hardware : Spresense + GS2200M

§ Spresense (main + extension)
§ Arm Cortex-M4F x 6 (up to 160MHz)
§ SRAM 1.5MB
§ microSDHC
§ SPI

§ High performance mode: up to 13.00 Mbps

§ Telit GS2200M *
§ Radio: 802.11b/g/n (2.4GHz only)
§ Voltage: VDDIO 1.8-3.3V, VIN3.3V
§ Interface**: UART/SPI (up to 10Mbps)/SDIO
§ Embedded TCP/IP stack
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Spresense Main Board

microSD card

GS2200M

Spresense 
Extension Board

USB-Serial : console + 
firmware download

SWD

**Default interface is configured by firmware* You can buy the Wi-Fi board from chip1stop 



Pin assignments

§ I/O voltage: 1.8V
§ Reset pin : UART2_RTS
§ IRQ pin : UART2_CTS *
§ Interface : SPI5
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https://idy-design.com/product/is110b.html

*GPIO37 in GS2200M is assigned for IRQ. See also : 1VV0301396_GS2200M_HW_User_Guide_r0.pdf



Hardware : STM32F4Discovery + GS2200M

§ STM32F4Discovery
§ Arm Cortex-M4F (168MHz)
§ SRAM 128KB + 64KB (CCM)
§ microSD over SPI (SPI2 is assigned)

§ SDHCI can be used

§ Telit GS2200M 
§ Radio: 802.11b/g/n (2.4GHz only)
§ Voltage: VDDIO3.3V, VIN3.3V
§ Interface: UART/SPI/SDIO
§ Embedded TCP/IP stack
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STM32F4Discovery

microSD card

GS2200M

ST-LINK2: firmware download & debug

FT231X
serial 
console



Pin assignments

§ FT231X to STM32F407
§ RXD : PA2 (USART2_TX)
§ TXD : PA3 (USART2_RX)

§ microSD to STM32F407
§ PIN2 (CD/D3) : PB12 (for chip select)
§ PIN5 (CLK) : PB13 (SPI2_SCK)
§ PIN3 (CMD) : PB15 (SPI2_MOSI)
§ PIN7 (D0) : PB14 (SPI2_MISO)
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§ GS2200M to STM32F407
§ GPIO33 : PE5 (for chip select)
§ GPIO35 : PB3 (SPI3_SCK)
§ GPIO34 : PB5 (SPI3_MOSI)
§ GPIO36 : PB4 (SPI3_MISO)
§ GPIO37 : PD2 (for interrupt)
§ EXT_RTC_RESET_N : PE4 (for reset)
§ VDDIO : 3.3V



HI frame format on SPI (from MCU)*

8*See GS2200M-S2W-Adapter-Command-Reference-Guide_r3.0.pdf



HI frame format on SPI (from GS node)
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Actual data length is set 
when the class is 
READ_RESPONSE_OK



Write transaction on SPI

§ Start with GPIO37=L
§ Send WRITE_REQUEST
§ Wait for GPIO37=H
§ Receive WRITE_RESPONSE
§ Send DATA_HEADER and 

DATA
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Read transaction on SPI

§ Start with GPIO37=H
§ Send READ_REQUEST
§ Wait for GPIO37=H
§ Receive READ_REPONSE
§ Receive DATA_HEADER 

and DATA
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Software architecture
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Network applications

SPI

GS2200M

/dev/gs2200m/dev/usrsock

webserver gs2200m daemontelnetd

Interrupt

The latest NuttX upstream  + Spresense

microSD

/dev/mmcsd0

SDHCI

DHCP client DNS client

kernel + driver

userland

NOTE: Though GS2200M supports high-level protocols such as HTTP(S)/MQTT, in this driver we only use low level.

Callback APIs

socket_request()
close_request()
....

context: gs2200m daemon

socket API

socket ()
close()
...



What is the usrsock ?

§ User-space networking stack API
§ User-space daemon and HAL provide NuttX networking features
§ This allows seamless integration of HW-provided TCP/IP stacks to NuttX
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Serial-to-WiFi on GS2200M

§ The Serial-to-WiFi stack is used to 
provide WiFi capability to any device 
having a serial interface. 

§ This approach offloads WLAN, TCP/IP 
stack and network management 
overhead to the WiFi chip, allowing a 
small embedded host (for example an 
MCU) to communicate with other hosts 
on the network using a WiFi wireless 
link. 

§ The host processor can use serial 
commands to configure the Serial-to-
WiFi Application and to create wireless 
and network connections. 
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Serial-to-WiFi

NOTE: IP-to-Wi-Fi is also possible, if you build with SDK builder.



AT command examples (1/2)
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AT command examples (2/2)
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NOTE: AT+NCUDP is not used in the gs2200m driver



Actual sequence with example apps

§ Initialize GS2200M driver
§ Connect to Wi-Fi network
§ Run DHCP client *

§ BULK mode in UDP
§ CID (Connection Identifier)
§ Interrupt and work queue

§ Run wget command
§ BULK mode in TCP
§ TCP flow control

§ Run telnet daemon
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Ubuntu 18.04

Spresense + GS2200M Wi-Fi 

The internet

*NOTE:  Need to disable DHCP client inside GS2200, because it conflicts.

Wi-Fi 

Wi-Fi router
as access point 



Driver initialization (1/2)

§ board_gs2200m_initialize()

§ Called vial board_app_initialize()

§ Change UART2 pins to GPIO

§ Change eMMC pins to SPI5

§ Call gs2200m_register()
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§ gs2200m_register()

§ Call gs2200m_initialize()

§ Set SPI to mode1/8bits/10MHz

§ Reset and un-reset the module

§ Call lower->attach(gs2200m_irq, dev) to attach IRQ



Driver initialization (2/2)

§ gs2200m_start()
§ Wait for GPIO37 to High
§ Check boot message

§ Serial2WiFi App
§ Disable echo

§ ATE0
§ Activate RX

§ AT+WRXACTIVE=1
§ Set network interface to ‘UP’
§ Enable interrupt
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Connect to Wi-Fi network

§ Disassociate
§ AT+WD

§ Set to STA mode
§ AT+WM=0

§ Disable DHCP client
§ AT+NDHCP=0

§ Set address *
§ AT+NSET=....

§ Get mac address info
§ AT+NMAC=?

§ Join the network
§ AT+WA=...

20*NOTE: AT command rejects to set address to “0.0.0.0”. I think this is a bug.



Run DHCP client (1/3)

§ Run DHCP client
§ nsh> renew eth0

§ Confirm the address with ifconfig
§ nsh> ifconfig
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Run DHCP client(2/3)

§ socket() system call
§ socket_request() in gs2200m daemon is called to allocate usockid.
§ however, no driver call happens.

§ ioctl() system call
§ ioctl_request() in gs2200m daemon is called

§ This call is used for get/set interface info.
§ then call ioctl(..., GS2200M_IOC_IFREQ, ...)

§ sendto() system call
§ sendto_request() in gs2200m daemon is called 
§ then call ioctl(..., GS2200M_IOC_SEND, ...)
§ In the gs2200m driver, start udp server to allocate CID. *
§ then send specified data as a bulk packet.

22* This might be tricky but in Serial-To-Wi-Fi, UDP client can only allocate a new CID for associated with destination.  

DHCP client gs2200m daemon

/dev/usrsock /dev/gs2200m

GS2200M

Callback APIs

socket_request()
close_request()
connect_request()
sendto_request()
recvfrom_request()
....



Run DHCP client(3/3)

§ recvfrom() system call
§ recvfrom() is blocked until a new packet is received.
§ If a new packet arrives, gs2200m_irq() is called then gs2200m_irq_worker() is called.
§ In gs2200m_irq_worker(), it receive the new packet and post semaphore to notify userland.
§ recvfrom_request() in gs2200m daemon is called then call ioctl(..., GS2200M_IOC_RECV, ...)
§ In the gs2200m driver, copy the packet to caller’s buffer.
§ recvfrom() is unblocked and return to caller.

§ close() system call
§ close_request() in gs2200m daemon is called.
§ then call ioctl(..., GS2200M_ICO_CLOSE, ...)
§ In the gs2200m driver, issue AT+NCLOSE to deallocate the CID
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CID (Connection Identifiers) in GS2200M

§ Once associated, the GS node supports instances of four types of network 
entities: TCP client, TCP server, UDP client and UDP server. 

§ Each client, or server, is associated with one or more of a possible 16 
Connection Identifiers, where the CID is a single hexadecimal number. 

§ More than one such entity can exist simultaneously; and a TCP server can 
have multiple connections, each with its own CID. 
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BULK mode in UDP
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Destination IP 
address and port

Source IP address  
and port



Interrupt and work queue

§ gs2200m_irq() : interrupt handler (top half)

§ Disable interrupt

§ Kick the work queue

§ gs2200m_irq_worker() : work queue handler (bottom half)

§ Receive a packet and if CID in the packet is valid, add it to the packet queue

§ If CONNECT packet is received (i.e. accept() should be unblocked), then validate the CID

§ If DISCONNECT packet is received (i.e. TCP passive close case), then invalidate the CID

§ If the packet is pushed to the queue, set POLLIN event to unblock poll() in gs2200m daemon

§ Enable interrupt 

26* Normal AT command and response are handled in the caller’s thread without work queue by disabling interrupt



Run wget command (1/2)

§ Run wget command
§ nsh> wget http://...

§ Check the downloaded file
§ nsh> cat index.html

27



Run wget client (2/2)

§ Daemon & Driver sequence is similar to DHCP client case. 
§ However, wget uses TCP (not UDP), so connect() system call and read() system calls are used

§ connect() system call
§ connect_request() in gs2200m daemon is called
§ then call ioctl(..., GS2200M_IOC_CONNECT, ...)
§ In the gs2200m driver, start TCP client in GS2200M and obtain a new CID

§ read() system call
§ read() is blocked until a new packet is received.
§ If a new packet is received, finally recvfrom_request() in gs2200m daemon is called
§ then call ioctl(..., GS2200M_IOC_RECV, ...)
§ In the gs2200m driver, copy packet (up to the specified length) to caller’s buffer.
§ If a packet still exists for the CID, then notify userland
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BULK mode in TCP
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TCP flow control

§ TCP flow control is needed to avoid out of 
memory when receiving a large data
§ Currently TCP flow control commands for Serial-To-Wi-

Fi  are not used

§ Instead, TCP flow control is done based on total 
bulk packet size
§ If the total bulk packet size exceeds a threshold (e.g. 

8KB), interrupt for GS2200 is disabled until the size is 
less than the threshold.
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0

1

2

pkt_q[cid]

f

Interrupt 
enabled

Interrupt
disabled



Run telnet daemon (1/2)

§ On NuttX console
§ nsh> ifconfig
§ nsh> telnetd &

§ On Ubuntu
§ $ telnet 192.168.10.21
§ After logging into NuttX
§ nsh> uname –a
§ nsh> ps
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Run telnet daemon (2/2)

§ Both DHCP client and wget command were UDP client and TCP client respectively.
§ However, telnet daemon is a TCP server program, so following system calls are newly used.

§ bind() system call
§ bind_request() in gs2200m daemon is called.
§ Then call ioctl(..., GS2200M_IOC_BIND, ...) to create a TCP server in GS2200M

§ listen() system call
§ listen_request() in gs2200m daemon is called but do nothing special.

§ accept() system call
§ accept_request() in gs2200m daemon is called with server’s CID
§ then call ioctl(..., GS2200M_IOC_ACCEPT,...) to accept connection
§ In the driver, remove the CONNECT packet
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Demo videos

§ Spresense + GS2200M
§ Run gs2200m deamon to connect to AP
§ Run telnetd and logging in from PC
§ Run webserver and access from PC
§ Run nxplayer for audio streaming from PC
§ Run wget to receive a file from the Internet
§ Run a downloaded ELF app from PC
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Ubuntu 18.04

Spresense + GS2200M

Wi-Fi 

The internet

Access Point

Web browsing with Firefox

NuttX 9.1.0

Wi-Fi 
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Any Questions?
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