

SRunning NuttX on Spresense Introduction and Hands-on

Takayoshi.Koizumi@sony.com Senior Manager IoT Solution Business Divition Sony Semiconductor Solutions Co.

- Boards
 - Spresense Main Board x 1
 - Spresense Extension Board x 1
 - WiFi Add-on Board x 1
- Other things prepared by yourself
 - micro USB cable x 2
 - microSD Card x 1
 - Earphone x 1
 - Linux PC
- Software on PC for hands-on
 - NuttX normal build environment
 - mkspk tool : <u>https://github.com/sonydevworld/</u> <u>cxd56.git</u>
- Bootloader FW
 - <u>https://developer.sony.com/file/download/</u> <u>download-spresense-firmware-v1-3-000</u>

MainBoard E

WiFi AddOn

- Source tree for hands-on
 - NuttX :
 - git clone https://bitbucket.org/nuttx/nuttx.git
 - apps :
 - git clone https://bitbucket.org/nuttx/apps.git
 - Spresense SDK :
 - git clone –recursive <u>https://github.com/sonydevworld/</u> spresense.git

- Introductions
 - Spresense and CXD5602
 - Documentations
 - Status of Upstreaming to Original NuttX
- Hands-on with NuttX
 - nsh
 - With explanation of bootup mechanism of CXD5602
 - usbnsh
 - rndis
 - WiFi with gs2200m
 - OpenOCD ICE debugging
 - Just Demo because board needs pin header to connect JTAG ICE.
- Demos with Spresense SDK

- Audio Player
- GNSS
- ASMP : Multicore framework
- Future plan for upstreaming

SPRESENSE™

Provided from Jly/2018

Low Power Multi Processor

- 28nm FD-SOI*3 technology
- 0.7V core voltage
- ASMP framework^{*4} for the multi processor

*3 Fully Depleted Silicon-On-Insulator to enable ultra-low-power features *4 Software Framework to make communication between processors

CPU	ARM® Cortex®-M4F x 6
Clock	Up to 156MHz
SRAM	1.5MB
Flash Memory	8MB
Digital I/O	GPIO, SPI, I2C, UART, PWM
Analog Inputs	6ch (3.3V range)
Audio I/O	8ch Digital MICs or 4ch Analog MICs, Stereo Speaker
GNSS	GPS, GLONASS, BeiDou, Galileo
Others	Camera IF, SD CARD, I2S

Audio Products for Music Lovers Provide New User Experience

- 192kHz/24bit High-Resolution audio
- 4 analog or 8 digital microphone inputs
- Class-D full digital amplifier

Positioning Features

- Ultra low power consumption
- GPS, GLONASS, QZSS
 Multiple GNSS systems supported

SPRESENSE extension board

Size	68.58 mm x 53.34 mm
Audio	Pin Header for 4 analog or 8 digital mics Headphone Jack
IO(3.3/5V)	Arduino compatible digital pins 5V range analog inputs

Size	50.0 mm x 20.0 mm
GNSS	GPS, GLONASS
IO(1.8V)	GPIO, UART, I2C, I2S, SPI
Others	4 Application LEDs

CAMERA BOARD

MAIN BOARD

50.0 mm

20.6 mm

EXTENSION BOARD

Sony Semiconductor Solutions Corporation 6

CXD5602GG

Low power GNSS functions Multicore processor High Resolution Audio Codec Camera Interface

CXD5247GF

Power Management Class D Full Digital Amplifier Microphone Interface Speaker Interface Battery Charger

Application Domain

Application SW works.

System and IOP Domain

System Management and Power domain control

Sensor Domain

Intelligent Sensor Hub

GNSS Domain

Independent GNSS positioning

5

Sony Semiconductor Solutions Corporation 8

SPI-Flash Filesystem

No Internal Flash in CXD5602. Non-volatile storage is 8MB SPI-Flash.

In SPI-Flash, there are 2 partitions.

Sensor Domain (Sensor Control Unit)

Intelligent internal sensor hub with three functions

- Automatic polling of sensor data using sequencer circuitry
- 2-stage IIR Filter

 "Event Detector" which detects the peak etc. of the sensor signal

- I/F for sensors (I2C/SPI/ADC)
- 40KB FIFO RAM for storing sensor data

Sensor Domain (Sensor Control Unit)

NuttX OS ver 7.22 (Scheduler, memory allocator, ...)

OS

- Software Documents
 - <u>https://developer.sony.com/develop/spresense/</u>
- HW Documents
 - Board Descriptions
 - https://developer.sony.com/develop/spresense/developer-tools/introduction
 - Board Schematics
 - <u>https://github.com/sonydevworld/spresense-hw-design-files</u>
 - CXD5602 Chip Specifications
 - https://www.sony-semicon.co.jp/products_en/spresense/index.html

Current Status of upstreaming to Original NuttX

091

Many functions have been already upstreamed by Alin-san <<u>Alin.Jerpelea@sony.com</u>> and Ishikawa-san <<u>Masayuki.Ishikawa@sony.com</u>>.

Many thanks to them.

	Not Yet	
AUDIO	SENSORS	EXTRA
audio_amp	(SCU)	backuplog
audio_baseb	ak09912	crashdump
and	apds9930	
	apds9960	ASMP
MODEM	bcm20706	sph
altmdm	bh1721fvc	
altmdm_spi	bh1745nuc	HELPER
	bm1383glv	libm_ermo
GNSS	bm1422gmv	
cpu1signal	bmi160	
geofence	bmp280	
gnss	kx022	
	lt1pa01	
BT	Rpr0521rs	

- nsh
 - With explanation of bootup mechanism of CXD5602
- usbnsh
- rndis
- WiFi with gs2200m
- OpenOCD ICE debugging
 - Just Demo because board needs pin header to connect JTAG ICE.

- System and IoP processor which is Coretex-M0 starts load own binary named loader.spk from SPK partition in SPI-Flash by Internal ROM Code.
- 2. loader.spk runs on the Coretex-M0.
- 3. loader.spk loads nuttx.spk from SPK partition in SPI-Flash to Application RAM.
- 4. And then, the nuttx.spk starts to run on one Application processor which is Coretex-M4F.

The UART1 is used for flashing executable binaries and default console

- Download binaries
 - <u>https://developer.sony.com/file/download/download-spresense-firmware-v1-3-000</u>
 - and expand downloaded zip file.
 - loader.espk, gnss.espk, dnnrt-mp.espk, AESM.espk
- Flash them onto Spresense Main Board

In your nuttx.git cloned directory,

use this microUSB port.for flashing.

\$ tools/flash_writer.py -c <port name like /dev/ttyUSB0> -b 1152000 <path to espk file>
 e.x.: & tools/flash_writer.py -c /dev/ttyUSB0 -b 1152000 path/to/espk/loader.espk

Tips option –b is baud rate for the UART. default is 115200. 1152000 is better (10 times higher) but it depends on your PC.
 If you got error when you use 1152000, remove –b option to use default baud rate.

mkspk tool need to be downloaded for making spk file

- To load nuttx binary on Spresense, the file format to have to be converted to spk format which is Son original format.
- To convert, mkspk tool must be downloaded.
- Instructions
 - Go to nuttx/tools directory and clone the tool repository.
 \$ cd path/to/your_tools_directory_in_nuttx_clone
 \$ git clone <u>https://github.com/sonydevworld/cxd56.git</u>

- Instructions
 - Go to nuttx/tools and configure spresense/nsh
 - \$ cd path/to/your_nuttx_tools
 - \$./configure.sh spresense/nsh
 - Go up a directory and make
 - \$ cd ..
 - \$ make
 - Flash built image
 - \$ tools/flash_writer.py -c <your ttyUSB path> -b 1152000 nuttx.spk
- How to execute
 - Access to NuttShell by using like minicom.
 - You can see NuttShell prompt on it.

- Spresense USB has microSDCard slot. USBMSC can access to the microSDCard via USB on Spresense. This application uses CXD5602 USB and eMMC I/F.
- Instructions
 - Go to nuttx directory and clean by using "distclean"
 \$ cd path/to/your_nuttx
 \$ make distclean
 - \$ make distclean
 - Go to nuttx/tools and configure spresense/usbnsh
 \$ cd path/to/your_nuttx_tools
 \$./configure.sh spresense/usbnsh
 - Go up a directory and make
 - \$ cd ..
 - \$ make
 - Flash built image
 - \$ tools/flash_writer.py -c <your ttyUSB path> -b 1152000 nuttx.spk
- How to execute
 - On your nsh prompt, execute mscom command
 > mscom

NuttX 2019 International Workshop July 16 & 17, Gouda, NL

- By using this, Spresense and PC can communicate each other as network connection.
- Instructions
 - Go to nuttx directory and clean by using "distclean"
 \$ cd path/to/your_nuttx
 \$ make distclean
 - Go to nuttx/tools and configure spresense/rndis
 \$ cd path/to/your_nuttx_tools
 \$./configure.sh spresense/rndis
 - Go up a directory and make
 - \$ cd ..
 - \$ make
 - Flash built image
 - \$ tools/flash_writer.py -c <your ttyUSB path> -b 1152000 nuttx.spk

- How to execute
 - On Spresense side
 - Execute webserver on NuttShell
 > webserver &
 - Confirm ip address
 > ifconfig
 - On your PC side
 - Confirm network interface name of the rndis device.
 \$ ifconfig
 - Setup ip address on the network interface.
 \$ sudo ifconfig <network interface name> <ip address> netmask 255.255.255.0
 - Then PC can access to Spresense.
 - See IP address of Spresense via browser
 - Connect telnet to Spresense.

 NuttX has UserSocket mechanism which is to support network devices that has protocol stack inside. gs2200m has tcp/ip stack in the device. At this hans-on, Spresense behaves as AccessPoint and will make own network. And web-server and telnet daemon run, so PC connected to the Spresense network can access to Spresense via telnet andWebBrowser.

Connection between WiFi Addon and Spresense MainBoard

- Instructions
 - Go to nuttx directory and clean by using "distclean"
 - \$ cd path/to/your_nuttx
 - \$ make distclean
 - Go to nuttx/tools and configure spresense/wifi
 - \$ cd path/to/your_nuttx_tools
 - \$ make distclean
 - \$./configure.sh spresense/wifi
 - Go up a directory and make
 - \$ cd ..
 - \$ make
 - Flash built image
 - \$ tools/flash_writer.py –c <your ttyUSB path> -b 1152000 nuttx.spk

- How to execute
 - On Spresense side
 - Execute gs2200m user sock daemon as AP mode on NuttShell
 - > gs2200m –a <channel number (1 to 11)> <unique ssid name> <10 digits password for WEP> & ex. > gs2200m –a 1 taka_net 1234567890 &
 - Execute webserver and telnetd as a daemon on NuttShell
 - > webserver &
 - > telnetd &
 - Confirm IP address of Spresense on NuttShell
 ifconfig
 - On PC side
 - Connect the SSID you set, and access to the IP address of Spresense from a browser.

- CXD5602 has JTAG ICE I/F, but Spresense Extension board has no pin header for it. So if you want to use it, you need soldering on that.
- CXD5602 JTAG ICE is supporting CMSIS-DAP. Our recommendation of ICE adaptor is
 - Keil ULINK2
 - NXP LPC-Link2
 - But other ICE supporting CMSIS-DAP can be used.
 ex. ULINK-ME can be used.

CoreSight10

NuttX 2019 International Workshop

July 16 & 17, Gouda, NL

VCC	SWDIO
GND	SWDCLK
GND	SWD
KEY(NC)	NC
GND nSRST	

[・]KEYの位置のビンをあるからめ深いてかる ビンペッダを半日付けする

CXD5602 config for OpenOCD is already marged in https://github.com/gnu-mcu-eclipse/openocd

- How to use
 - Start OCD process
 - \$ openocd -f interface/cmsis-dap.cfg -f target/cxd5602.cfg
 - Start GDB
 - \$ arm-none-eabi-gdb
 - In GDB,
 - Connect to OpenOCD
 (gdb) target remote localhost:3333
 - Load nuttx elf file
 - (gdb) monitor reset halt (gdb) file nuttx (gdb) load
 - Set break points like
 - (gdb) b hello_main
 - Start nuttx (gdb) continue
 - On NuttShell side, execute hello, then break is occured > hello

- Audio Player
- GNSS
- ASMP : Multicore framework

Spresense SDK is built based on NuttX v7.22. In the repository, there are 2 big part. One is nuttx, the other is sdk.

Build system is based on NuttX but some differences exist. Especially, nuttx and sdk build is split.

In this workshop, I will show you some Spresense SDK demos from source code build.

- Spresense has Audio in/out functionality.
- The software stack is like OpemMAX.
- Current supporting codecs are
 - MP3 and WAV
- In this demo, it Spresense play MP3 file.

NuttX 2019 International Workshop July 16 & 17, Gourda, NL

Audio Software Stack of Spresense SDK

- Build NuttX kernel
 - Instructions
 - Go to spresense/sdk/ directory
 - \$ cd path/to/sdk_directory_in_cloned_spresense_repository
 - Kernel default configure, you can choose "release" or "debug" \$ tools/configure.py –k release
 - Build kernel
 - \$ make buildkernel
 - Then nuttx side is built.
- Build sdk side with audio_player examples
 - The example code is in spresense/examples/audio_player
 - Instructions
 - In the same directory "sdk", configure audio_player example configuration with sdcard.
 \$ tools/configure.py examples/audio_player device/sdcard
 - Enable USB MSC command by using menuconfig
 - \$ make menuconfig

[Syste tools] -> [USB Mass Storage Deice Commands]

• Build it

\$ make

• Then nuttx.spk is created on the directory.

- How to execute
 - Needed files should be store in SDCard.
 - Copy spresense/examples/audio_player/AUDIO and spresense/examples/audio_player/PLAYLIST into top directory of SDCard.
 - Make "BIN" directory on top of SDCard.
 - Copy spresense/sdk/modules/audio/dsp/MP3DEC into the "BIN" directory.
 - Then execute player on NuttShell
 - > player

Spresense GNSS is completely independent from NuttX. The driver on NuttX is just stub I/F to GNSS CPU (Coretex-M4F).

 Supported satelite : GPS / QZSS / GLONASS (/ Beidu / Galileo)

> GNSS core will communicate with Application CPU NuttX runs.

■ Geofence is also support in the GNSS core.

- Build sdk side with gnss examples
 - The example code is in spresense/examples/gnss
 - Instructions
 - In the same directory "sdk", configure audio_player example configuration.
 \$ tools/configure.py examples/gnss
 - Build it
 - \$ make
 - Then nuttx.spk is created on the directory.
- How to execute
 - Execute gnss command on NuttShell
 > gnss
 - To detect your position if satellite signal is detected.

Managing Sub-CPUs and Memory resources.

 CPU Resource
 Manage Memory Tiles
 Provide simple library for synchronizing CPUs

Three synchronize mechanism

Mutex between CPUs —

Message queues between CPUs—

- Build sdk side with asmp examples
 - The example code is in spresense/examples/asmp
 - This example make one binary inclutind sub-core elf file in ramfs.
 - So first, mount the ramfs and then execute sub-core elf file on another Coretex-M4F.
 - Instructions
 - In the same directory "sdk", configure asmp example configuration.
 \$ tools/configure.py examples/asmp
 - Build it
 - \$ make
 - Then nuttx.spk is created on the directory.
- How to execute
 - Execute gnss command on NuttShell
 - > gnss

I hope you enjoy it!

Thank you.

"Xperia Ear Duo" is a commercial product from Sony Mobile provided March/2018. And it is using CXD5602 and Spresense SDK including NuttX v7.22.

