
upm
Unofficial, opinionated

NuttX project management tool

python scripts
they don't alter build process

Goals
– Simplify NuttX setup tasks

– Lead the user by suggesting next steps

– Change folder structure to keep project-dedicated code together

– Group configuration options into project-related, logical modules

slightly

Short command list

No need to be in nuttx directory.

Desired project structure
/apps – just custom apps
/libs – just custom libs
/boards – just custom board code
/os – upstream bundle
 /nuttx
 /apps (custom_apps → ../../../apps, custom_libs → ../../../libs)

Why do we need CLI tool? Usual tasks.
– How to clone repositories and build the firmware?

– How to add a new app?

– How to add a custom board?

– How to add some library?

– How to use Git for new app, custom board and custom library?

How to clone, build, flash?
$ mkdir firmware
$ cd firmware
$ git clone https://bitbucket.org/nuttx/nuttx.git nuttx
$ git clone https://bitbucket.org/nuttx/apps.git apps
$ cd nuttx
$ tools/configure.sh hymini-stm32v/usbnsh
$ make
$ st-flash write nuttx.bin 0x8000000

How to add a new app?
$ cd firmware
$ cd apps/examples
$ cp -r hello myapp
$ cd ../../nuttx
$ make

$ cd ../../apps/examples/myapp
$ find . -type f -exec sed -i "s/hello/myapp/g" {} \;
$ find . -type f -exec sed -i "s/HELLO/mypapp/g" {} \;
$ mv hello_main.c myapp.cxx
$ make

crash during linking because of duplicate names

How to add a custom board code?
$ cd nuttx/configs
$ cp -r stm32f4discovery custom_board

nuttx/configs/Kconfig
...
+ config ARCH_BOARD_CUSTOM_BOARD
+ bool "Custom board"
+ depends on ARCH_CHIP_STM32F407VG || ARCH_CHIP_STM32F407ZG
...
+ default "custom_board" if ARCH_BOARD_CUSTOM_BOARD
...
+ if ARCH_BOARD_CUSTOM_BOARD
+ source "configs/custom_board/Kconfig"
+ endif
...

Why do we need CLI tool?
Web frameworks

React.js – $ react
Vue.js – $ vue
Ember.js – $ ember

Embedded
Zephyr – $ west
ESP32 – $ idf.py

NuttX currently relies on simplicity
Make, nuttx/tools
Kconfig-frontends
C/C++ preprocessor
A few symlinks

Tool is not necessary
+ Simplicity
+ Full control over the process

But we could use one
+ Provides some guidance
+ Easier entry for new people
+ What is logically one thing should be one command

NuttX is a framework

nuttx/tools

What CLI tools do in frameworks?
– Simplification of common tasks, like
 – starting new projects
 – building
 – versioning and distribution
 – handling updates
 – deploying

– Generation of boilerplate code
– Warning about issues, suggesting solutions

– They include some know-how which user don't need to remember

Example upm usage
fw $ upm init .
fw $ upm generate --app rest_api --app-template webserver
fw $ upm use --board stm32f4discovery
fw $ upm run
fw $ upm console
(enter)
nsh>

– Generates directory structure
– Clones NuttX repositories
– Copies selected example app
– Links selected board
– Builds and flashes, connects to NuttX console

one task, one command

Configuration protection

Configuration modules – Kconfiglib
config/atoms/enc28j60.kconfig config/modules/webserver

Philosophy
– Do not perform actions, just suggest them, be verbose

– Stay simple
– Always ask before doing intrusive change
– Accept commands from any subdirectory (similar to git)
– Show state when asked (similar to git)

– Tries to get a bit bigger picture than scripts in nuttx/tools

How upm could handle Spresense™?
– suggest cloning of SDK and cloning it for user
– suggest downloading of firmware, flash_writer
 – ask user to accept licenses and download files to some folder
 – say where to find them
 – warn if something is still missing
– etc.
 – warn if module is missing

Maybe some plugin approach for platforms with extra requirements.

Challenges?
– some part still work in progress
– maybe disabling what is not polished would be a way to go

– dependency management?
– plugins
– git submodule management

REST APIs
Express-like + UI synchronization

REST APIs – Node.js Express

Sinatra, Flask

REST APIs – same route in NuttX webserver

REST APIs – Express-like list of routes

Simple helpers:
– https://gitlab.com/w8jcik/upm/snippets/1876008 (http.cxx)
– https://gitlab.com/w8jcik/upm/snippets/1876010 (http.h)

https://gitlab.com/w8jcik/upm/snippets/1876008
https://gitlab.com/w8jcik/upm/snippets/1876010

Reaching µc from JavaScript framework

React, Vue, Ember

What with two windows open?

Polling

Reporting only changed state

Variable.get_changed_time()
Variable.get_name()
Variable.get()

A lot of variables.

Two different browser windows synchronize

More efficient than polling

NuttX 2019
experience exchange :) →

LittlevGL
Small UI apps and emulation

LittlevGL 6.0 released this week
Screen rotation
Multiple displays

LittlevGL 5.3
– Present in apps/examples
– Example board configuration for /dev/fb0

– But can be also used without framebuffer
 – External RAM not required
 – Display connected in any way (SPI, FSMC)

Is it recognized enough?

Running in emulator – Mocks

Makefile

…

Emulator

Microapps

lvgl initialization

monolythic lvgl app
(not easily reusable)

lvgl deinitialization

screen calibration
app

network
configuration

app

time/date
configuration app

assets copying
app

business logic
(not reusable)

/mnt/flash

Slight analogy to microservices and
android intentions

nsh> tcal

nsh> tconf

nsh> nconf

nsh> loader

lvgl initialization

lvgl deinitialization

Microservices

Letting projects grow

Development UI development stages

InVision LittlevGL
Emulator

Microcontroller
NuttX

UI prototyping tool

(visually correct prototype)

(discussion and review)

Challenges?
– integration of LittlevGL emulator with upm

/oses
/default (/nuttx, /apps)
/lvgl_emulator

– lack of libraries for UI prototyping software
– check the process

