
FEIG ELECTRONIC GmbH
D-35781 Weilburg, info@feig.de, www.feig.de

Michael Jung
michael.jung@feig.de / mijung@gmx.net

NUTTX AND PAYMENT CARD INDUSTRY
SECURITY STANDARDS

07/15/2019 2

SESSION OBJECTIVES

♦ Discuss Approaches and Get Community Feedback for

♦ Enhancing NuttX Security w.r.t.

♦ Cryptographic Key Storage and Access Control

♦ Code Signing and NuttX SDKs

♦ To Empower NuttX as a Platform for

♦ Payment Devices

♦ Secure IoT Devices

07/15/2019 3

FEIG ELECTRONIC - CVEND

♦ Linux® based Contactless (NFC) Secure Card Reader (SCR)

♦ EMV® Contactless Kernels for all major Credit Card Brands

♦ Tamper Responsive Cryptographic Tokens with PKCS#11 API

♦ Secure Boot, Secure Firmware Update, Signed Application Code

♦ Payment Applications developed by Third Partys with FEIG cVEND
SDK: GNU Toolchain, FEIG Libraries and Tools

♦ Payment Card Industry - PIN Transaction Security - Point of
Interaction (PCI PTS POI) Version 4.0 Compliant

♦ Card Data Protection only (No PIN Processing)

♦ “The Raspberry Pi® of Payment Terminals” - Good Market Reception

PAYMENT

07/15/2019 4

COULD THIS BE DONE WITH NUTTX ON AN MCU? DEMO!

MINIMAL POINT-OF-SALE DEMO

http://10.0.0.2/

07/15/2019 5

PAYMENT CARD INDUSTRY SECURITY STANDARDS

♦ PIN Transaction Security - Point of Interaction (PCI PTS POI)

♦ Not strictly required if no PINs are handled, but helps for PCI DSS

♦ SCR Requirements: Keystore / No Application

♦ PCI Data Security Standard (PCI DSS)

♦ Assessing the complete Card Data Environment (CDE)

♦ No Secure Card Reader required

♦ PCI Point-to-Point-Encryption (PCI P2PE)

♦ Terminal-to-Host-Encryption

♦ Merchant Network no longer in scope of PCI DSS

♦ Requires Host specific Protocol Encryption on Terminal

♦ SCR Requirements: Keystore and Application

Merchant
Network

Terminal Internal Network
e.g. Vending Machine

Public Network
(VPN / TLS)

Payment Service
Provider Network

Public Network
Payment Service

Provider

CRYPTOGRAPHIC KEY STORAGE
AND ACCESS CONTROL

How to guarantee that applications

❯ never have access to clear text cryptographic keys, and

❯ can use cryptographic keys only for their intended purpose

07/15/2019 7

PROTECTING KEYS WITH AN APPLICATION INTERPRETER

♦ Use MicroPython, QuickJS, or other interpreters

♦ Controlled Access to Keystore via C function wrappers

♦ MicroPython user C module, or

♦ QuickJS C API, or

♦ ...

♦ NuttX Flat Build sufficient (e.g. no Memory Protection required)

♦ Cons:

♦ Considerable Resource Load

♦ Embedded Developers love C

07/15/2019 8

PROTECTING KEYS WITH THE MEMORY PROTECTION UNIT

♦ NuttX Protected Build

♦ Keystore “Device Driver” to provide Crypto Services and enforce Access Control

♦ Keys stored in MPU protected privileged RAM / Flash / Battery-Backed SRAM

♦ PKCS#11 API (or conceptually similar) via ioctl()

♦ Might be Sebastien Lorquet’s Crypto Mangager

♦ Just how secure is the NuttX Protected Build? From the NuttX TODO file:

♦ “In the current design, the kernel code calls into the user-space allocators to allocate user-space memory.”

♦ At least to allocate space for a new tasks stack. Others? “That could be fixed by dropping to user mode”. Hard?

♦ “Another place where the system calls into the user code in kernel mode is work_usrstart() to start the user work queue.”

♦ Plugged by de-configuring LIB_USRWORK?

♦ “When a C++ ELF module is loaded, its C++ constructors are called via sched/task_starthook.c logic. This logic runs in protected mode.”

♦ Plugged by BINFMT_DISABLE?

♦ Are there more known holes to be plugged?

07/15/2019 9

PROTECTING KEYS WITH ARM TRUSTZONE

♦ Upcoming Cortex-M23 / -M33 MCUs include TrustZone
technology

♦ E.g. STM32L5 or LPC5500

♦ Focus on IoT Security

♦ Sampling now

♦ ARMv8-M

♦ NuttX as a Trusted Execution Environment?

♦ “SMP and TrustZone on the i.MX6 quad was part of a
research project with a University [...]”

”I have heard of people using NuttX as TrustZone masters
on high end products [...]”

(Greg’s comment on NuttX Issue #92)

♦ There are some references to TRUSTZONE in
arch/arm/src/armv7-a/arm_gicv2.c

NUTTX BASED
SOFTWARE DEVELOPMENT KIT

How to ship an embedded device with

❯ vendor controlled firmware (including the NuttX kernel)

❯ on which system integrators can install their own application

07/15/2019 11

BOARD SPECIFIC NUTTX SOFTWARE DEVELOPMENT KIT

♦ Configure nuttx for Protected Mode Kernel and SDK build for a certain board (e.g. pnev5180b/sdk)

♦ Create GNU toolchain with Buildroot (e.g. cortexm3-eabi-defconfig-7.3.0)

♦ make pass2 generates the kernel blob (to be flashed via e.g. DFU as firmware)

♦ make pass1 export creates nuttx-export.zip

♦ copy header files and libnuttx.a into toolchain

♦ copy linker script (nuttx.ld) and userspace.c into toolchain

♦ Example: Compile hello world example into a userspace blob (to be flashed via e.g. DFU as application):

♦ arm-nuttx-eabi-gcc -o hello hello.c ~/nuttx-sdk/share/nuttx/userspace.c -nostdlib -lnuttx -
Tldscripts/nuttx.ld

♦ Streamlining: Compile userspace.c into libnuttx.a, make nuttx.ld default linker script, make -nostdlib implicit. Ideas?

♦ With a config.site file in the `sysroot` static libraries can be compiled for NuttX from autotools packages.

♦ Buildroot with NuttX kernel? http://lists.busybox.net/pipermail/buildroot/2015-July/131978.html

SECURE BOOT AND
CODE SIGNING

How to guarantee that access to the system integrator‘s
cryptographic keys is granted only to his application

07/15/2019 13

SECURE BOOT / SIGNED APPLICATIONS

♦ Integrity Check of Kernel Blob Out-of-Scope

♦ Boot ROM’s or 1st Level Boot Loader’s job

♦ Integrity Check of Application Code (Only Authorized Applications get Keystore Access)

♦ Extend the User-Mode Blob Header (struct userspace_s) with meta-data:

♦ A digital signature (e.g. RSASSA-PKCS1-v1_5) of us_entrypoint value and text, data, rodata, and bss
section contents.

♦ A version field to protect against downgrades.

♦ nx_start_application() verify that

♦ no downgrade was performed (by comparing version field agains value stored in Flash / EEPROM of highest ever installed
application code version), and

♦ the digital signature is correct with a Public Key stored as part of the NuttX Kernel Blob or in the Keystore

♦ If checks fail stay in Device Firmware Upgrade (DFU) mode

07/15/2019 14

● There Probably are
Questions

● But they are not on
this Bulleted List

● Because of
Causality

07/15/2019 15

CREDITS

♦ Title Page Photo by Florian Klauer on Unsplash

♦ Objectives Slide Photo by Alexander Muzenhardt on Unsplash

♦ Key Storage Slide Photo by James Sutton on Unsplash

♦ Code Signing Slide Photo by Helloquence on Unsplash

♦ SDK Slide Photo by Markus Spiske on Unsplash

♦ Thanks Slide Photo by Courtney Hedger on Unsplash

♦ Causality joke on Thanks Slide by Joseph Poon and Thaddeus Dryja

♦ All trademarks cited are the property of their respective owners

./%23Thanks!
./%23Thanks!

	Title Page
	Objectives
	cVEND
	Demo
	PCI Security Standards
	Key Storage
	Interpreters
	MPU
	TrustZone
	SDK
	NuttX SDK
	Code Signing
	Secure Boot / Signed Applications
	Thanks
	Credits

