
SMP and Networking support
on NuttX / LC823450

Masayuki.Ishikawa@sony.com

Sony Home Entertainment & Sound Products Inc.

Senior Software Engineer

Background Image by Arwin Meijer, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=54493666

Agenda

§ Development history (NuttX-based products)
§ SMP (Symmetric Multiprocessing) related status
§ Networking related status
§ Demo videos

2

Development history*(NuttX-based products)

§ Oct 2013 -
§ Ported NuttX to LC823425 (ARM7)

§ Apr 2014 -
§ Ported bluetooth stack to NuttX + QEMU

§ Jul 2014 -
§ Ported NuttX to LC823450 (Cortex-M3) FPGA

§ Jan 2015 -
§ Migrated to LC823450-ES board

§ Sep 2015 -
§ Released the first NuttX-based audio products.

§ Oct 2016 -
§ Talked at Arm TechCon 2016, ELC NA 2017 ** and

OpenIoT NA 2018

3*https://www.youtube.com/watch?v=TjuzH6JthxQ ** https://www.youtube.com/watch?v=T8fLjWyI5nI

About NuttX and why we chose it

§ POSIX and libc are supported
§ Can reuse existing software
§ Can reduce training costs

§ ELF* is supported
§ Can divide into small apps

§ Driver framework is supported
§ Helps us implement drivers

§ Has Linux-like configuration system
§ Helps us develop multiple products

§ Many MCUs and boards are supported
§ Helps us port NuttX to new MCU

§ Provided with BSD license

4

From http://www.nuttx.org/

* ELF = Executable and Linking Format

LC823450 Features

§ ARM dual Cortex-M3
§ 32bit fixed point, dual-MAC original DSP
§ Internal SRAM (1656KB) for ARM and DSP
§ I2S I/F with 16/24/32bit, MAX 192kHz (2chx2)
§ Hard wired audio functions

§ MP3 encoder and decoder, EQ (6-band equalizer), etc.
§ Integrated analog functions

§ Low-power Class D HP amplifier, system PLL
§ Dedicated audio PLL, ADC

§ Various interfaces
§ USB2.0 HS device / host (not OTG), eMMC, SD card, SPI, I2C, etc.

§ ARM and DSP clock max frequency
§ 160MHz at 1.2V
§ 100MHz at 1.0V

5

ON Semiconductor LC823450

From http://www.onsemi.com/PowerSolutions/product.do?id=LC823450

AMP vs SMP in general *

§ Asymmetric multiprocessing (AMP)
§ A separate OS, or a separate copy of the same OS,

manages each core.
§ Provides an execution environment similar to that of

uniprocessor system, allowing simple migration of legacy
code. Also allows developers to manage each core
independently.

§ Symmetric multiprocessing (SMP)
§ A single OS manages all processor cores simultaneously.

The OS can dynamically schedule any process on any core.
§ Provides greater scalability and parallelism than AMP,

along with simpler shared resource management

6

Apps Apps

OS#0 OS#1

CPU#0 CPU#1

Apps Apps

OS

CPU#0 CPU#1

AMP

SMP

* http://www.embeddedintel.com/special_features.php?article=189

Why SMP with LC823450?

§ Motivation
§ Run existing applications in SMP mode
§ Establish knowledge on debugging
§ Confirm performance penalty *
§ Confirm power consumption
§ Very challenging theme (because NuttX is

not just a scheduler)

§ Other reasons…
§ The architecture is much simpler than

quad Cortex-A9.
§ Suitable system to understand SMP

kernel.

7* Note that LC823450 does not have CPU cache but has multiple SRAM segments

Introduction to the NuttX SMP kernel

§ Minimum changes to non-SMP kernel
§ CONFIG_SMP is introduced.
§ Main changes are done in the scheduler

§ Newly introduced
§ Spinlock to protect shared resources
§ Critical section APIs to replace with local interrupt

control APIs.
§ pthread_setaffinity_np(), sched_setaffinity() are

supported

§ H/W interrupts except for inter-CPU interrupts
are assumed to be handled at CPU0
§ To prevent deadlocks

8

NuttX SMP : available boards

§ NXP (Freescale) i.MX6 Quad Sabre
§ Quad Arm Cortex-A9
§ SMP kernel can run on QEMU *

§ Espressif Systems ESP32
§ Dual Tensilica LX6 *

§ Microchip (Atmel) SAM4CMP-DB
§ Arm Cortex-M4 w/MPU + Cortex-M4F *

§ ON Semiconductor LC823450XGEVK
§ Dual Arm Cortex-M3
§ Approx. $46 **

9*ostest still has some issues.

SAM4CMP-DB LC823450XGEVK

ESP32
i.MX6 Quad Sabre

**http://www.components-center.com/product/ON-Semiconductor/LC823450XGEVK.html

Running SMP kernel : SAM4CMP-DB

§ Cortex-M4 /w MPU + Cortex-M4F
§ Not symmetric, but if both CPU does not use

MPU nor FPU, it should be OK.
§ Each CPU has local SRAM which can be

accessed via bus bridge from another CPU.

§ Bus bridge issue *
§ “ostest” crashes due to CPU lockup or hardfault
§ It’s difficult to assure memory access just by

memory barrier operations.
§ Dummy memory read/write might resolve this

issue, but we still can not find the correct way.
§ We asked this issues to Atmel before, but no

response received yet.

10* I don’t think this board can perfectly work in SMP mode

Running SMP kernel : LC823450XGEVK

§ Port existing drivers to the latest NuttX
§ UART, Timer, GPIO, DMA, I2C, SPI, LCD
§ eMMC (including boot), SD, USB, ADC, …

§ Implement SMP related code
§ lc823450_cpuidlestack.c, lc823450_cpuindex.c
§ lc823450_cpupause.c, lc823450_cpustart.c,

lc823450_testset.c (NOTE: H/W Mutex is used instead
of ldex, strex)

§ Performance improvement
§ Introduced spin_lock_irqsave(), spin_unlock_irqrstore()
§ Applied APIs inside the driver code.
§ Up to 20% performance improvement achieved

11

Tracing SMP kernel

§ What events can be traced
§ SMP specific (inter-CPU communication)

§ CPU_PAUSE, CPU_PAUSED,
CPU_RESUMED

§ SMP/non-SMP common
§ SUSPEND, RESUME (context switch)
§ PREEMPT_LOCK, PREEMPT_UNLOCK

§ Tools
§ Use gdb macro to dump the trace buffer
§ Use “noteinfo” to analyze the dump file

12

OpenOCD for lc823450-smp*

§ Implementation
§ Understand how Cortex-A SMP support

works in OpenOCD
§ Modify several files (target/cortex_m.c …)

to support Cortex-M in SMP mode
§ Specify APSEL (Access Port Selection)

when accessing to each core in LC823450

§ Modify tcl/target/lc823450.cfg to support
multiple debug access ports and targets.

§ Modify rtos/nuttx.c to show SMP related
tasklists

13*Code is NOT merged yet.

SW-DP#0

CM3#0
debug

CM3#0
core

MEM-AP#0
(AHB-AP)

AHB

CM3#1
debug

CM3#1
core

MEM-AP#1
(AHB-AP)

SWD

APSEL=1

APSEL=0

Debugging an SMP application
§ Modify hello_main.c

§ Assign the current task to CPU1 (not CPU0)
§ Print CPU index.

§ Add a break point at printf()
§ Run “hello” on the nsh
§ Break point hits on CPU1
§ Check the trace log

14

Enhance DVFS* for SMP

§ Need to handle both CPUs
§ 1. If at least one CPU is active, the apply

active mode clock.
§ 2. If both CPUs are idle (i.e. WFI), then apply

idle mode clock

§ Calculate CPU idle time on both CPUs
§ 3. If at least one CPU falls below lower

threshold (e.g. 20% idle), then go to higher
clock mode.

§ 4. If both CPUs exceed higher threshold (e.g.
70% idle), then go to lower clock mode

15

CPU0
activity

CPU1
activity

Active
mode
clock

Active
mode
clock

Idle
mode
clock

* See also: https://www.youtube.com/watch?v=T8fLjWyI5nI

CPU0 idle CPU1 idle Next clock state

10% 80% Go to higher clock mode

80% 10% Go to higher clock mode

80% 80% Go to lower clock mode

50% 50% Keep the current clock mode

CPU activity examples* (1/2)

16

nsh> taskset 3 busyloop 4

nsh> taskset 3 busyloop 4 &
nsh> taskset 3 busyloop 4 &

nsh> taskset 2 busyloop

* CH1=Cortex-M3 #0, CH2=Cortex-M3 #1 Usage: taskset mask command [args]
mask=1 assigns CPU0, mask=2 assigns CPU1, mask=3 assigns CPU0 or CPU1

(1)

(2)

nsh> taskset 2 busyloop 4 &
nsh> taskset 2 busyloop 4 &

(4)

(3)

4.1s

4.1s

5.2s

2.4s 2.8s
8.2s

CPU activity examples (2/2)

§ Background
§ LC823450 has 3 SDIO controllers.
§ eMMC uses CH0, uSD uses CH1.
§ Accessing different channels will be faster than

accessing the same channel.

§ (1) Two md5 for the same channel
§ Concurrent access is impossible.
§ Results: 11.0 sec & 11.0 sec (file size=6.6MB)
§ NOTE: 5.9 sec (eMMC single access)

§ (2) Two md5 for different channels
§ Concurrent access is possible.
§ Results: 7.8 sec & 7.9 sec (file size=6.6MB)
§ NOTE: 6.2sec (uSD single access)

17

(1) Two md5 for the same channel (eMMC)

(2) Two md5 for different channels (eMMC and uSD)

* uSD: SanDisk 16GB (SDSDQUP-016G-J35A)

Power consumption comparison

§ nxplayer with local playback
§ WAV file 44.1kHz/16bit/2ch on eMMC
§ Vdd1=1.0V *
§ CPU clock = 40MHz (active), 6MHz(idle)

§ Power consumption** @Vdd1
§ SMP : 6.0mA (idle=3.6mA)
§ non-SMP : 4.4mA (idle=3.5mA)

Performance penalty in SMP mode is
outstanding (i.e. bus conflicts and scheduling
overhead) . However, more optimization would
be possible.

18
*Power consumption of the logic part (i.e. Cortex-M3, SRAM, DMA, I2S, …) inside the MCU
**Audio paths are need to be changed as of OpenIoT NA 2018

SMP

non-SMP

Networking with LC823450XGEVK

§ Motivation
§ Confirm NuttX network stack feasibility

§ IPv4, IPv6, ICMP, UDP, TCP, …
§ Run the network stack with minimum efforts.

(We already have an USB driver for LC823450)
§ Audio streaming (PCM and MP3)
§ Run the network stack in SMP mode
§ Do various tests via telnet

19

NuttX networking features

§ Ethernet and IEEE 802.11 Full MAC
§ 6LoWPAN for radio network drivers (IEEE

802.15.4 MAC)
§ USB RNDIS (since 7.23), CDC-ECM (since 7.26)
§ SLIP, TUN/PPP, local loopback devices
§ IPv4, IPv6, TCP, UDP, ARP, ICMP, ICMPv6,

IGMPv2
§ IP forwarding
§ BSD compatible socket layer
§ DNS name resolution / NetDB
§ User socket (listen/accept are supported in 7.26)
§ Bluetooth socket

20

Ethernet Wi-Fi 802.15.4 RNDIS

6LoWPAN

IPv4 IPv6

TCP

loopback PPP

UDP

ICMP ICMPv6ARP

PCM audio streaming via RNDIS

§ Fix RNDIS driver for NuttX
§ Fix data corruption
§ Add USB high speed mode support

§ Receive window control has been added
§ Need more improvement due to packet drop

§ Modify nxplayer to support HTTP
streaming
§ Currently only WAV format is supported.

§ Still testing with SMP kernel
§ In various conditions (clock speed, network

traffic, etc)

21

PCM audio streaming demo environment

LC823450

USB
RNDIS

Audio
WM8776

OpenWrt
RNDIS host

Ethernet

Apache2 +
Ubuntu
on virtualbox

WZR-HP-G300NH

PCM audio streaming example

§ ‘ps’ command results shows
§ Dual CPUs are running
§ telnet daemon is running
§ one telnet session is running
§ nxplayer is running

§ ‘ifconfig’ command results shows
§ private address has been assigned

via DHCP
§ TCP/UDP traffic (NOTE: some TCP

packets are dropped due to iob
starvation, so TCP flow control should
be improved)

22

Network traffic and CPU activity examples

23

(1) CPU clock : 160MHz (fixed)

(2) CPU clock : 160/80/40MHz (auto)Network traffic when PCM audio (44.1k/16bit/2ch) streaming is working

music #1 music #2 music #3

MP3 audio streaming via Bluetooth

§ Port the BTstack* by Bluekitchen to NuttX
§ Based on posix-h4** with H/W flow control
§ UART speed : 921600 baud
§ Tested with iOS/Android/macOS/OpenWrt
§ Free for non-commercial use

§ Add TAP mode to the NuttX tun driver
§ TAP mode is used for network bridge
§ NOTE: TUN mode is used for network routing

§ Add H/W MP3 decoder to lc823450_i2s.c

§ HCI_RESET issue in SMP mode
§ CSR’s mode change with HCI_RESET is tricky
§ Still unstable in SMP mode

24

LC823450

BT
PAN
profile

Audio
WM8776

OpenWrt
NAP role

CSR8811

WZR-HP-G300NH

Apache2 +
Ubuntu
on virtualbox

MP3 audio streaming demo environment

* https://bluekitchen-gmbh.com/
** We can use posix-h5 (3-wire protocol) as well. However, it has performance drawbacks.

Ethernet

Running the BTstack on NuttX

25

IPv4

TCP

tun (bnep0)

UDP

ICMP ARP

UART

tinyplay renew (dhcp client)

CSR8811

*PAN: Personal Area Network
*BNEP: Bluetooth Network Encapsulation Protocol

OpenWrt
PAN-NAP* role
DHCP server

WZR-HP-G300NH

*NAP: Network Access Point

Transport

Protocols

Profiles

BT
PAN
profile

LC823450-XGEVK

BTstack log example

26

MP3 streaming via Bluetooth

27

Demo videos

§ CPU activity examples (busyloop, md5)
§ HTTP PCM audio streaming via RNDIS

28

Any Questions?

29

