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RFID



RFID
● Radio Frequency IDentification
● Uses radio waves to identify and/or track tagged objects
● A system consists of readers and tags
● Tags contain electronically stored information
● Active tags have a local power source and an active transmitter
● Passive tags collect energy from the radio waves 

and do not have an active transmitter



RFID Frequencies

125 kHz 13.56 MHz 900 MHz 2.4 GHz 5.8 GHz



Backscattering

● A reader has a radio transmitter and 
receiver

● A tag does not have a radio 
transmitter

● Compare with a flashlight and a 
mirror



RAIN RFID
● Global standard for backscattering RFID @ 860-960 MHz
● Used to identify, locate and authenticate things
● Typical read range up to 10 meters



TagMaster



TagMaster

● Founded 1994 with HQ in Kista, Sweden
● Originally a 2.45 GHz RFID company
● Now a global group of companies, focusing on 

traffic and rail solutions for Smart Cities 



TagMaster - RAIN RFID Readers
XT Mini XT-1 XT-1 ETC XT-5 XT-5 ETC

NuttXNuttX NuttX + Linux



TagMaster - RAIN RFID Tags

HeadLight Tag

WindShield Tag ISO Card

Other tags...



TagMaster - RFID for Parking



TagMaster - RFID for Rail



TagMaster - RFID for Road Tolls

24/7



Why NuttX?



2005 Reader Platform Getting Old
● RF module approaching end of life
● Unused legacy RF interface
● Aging Linux system
● Diverging user requirements

– Most users want a cheap reader and don’t 
care about the Linux system.

– Many users only need a few of the interfaces
– Power users need the programmable Linux 

system but wants higher performance and 
more memory.Re
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A New Scalable Architecture
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Needing a New Operating System
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Shared Library

Application

Shared Library

Application

Existing Software Architecture

Kernel Driver

Daemon

Shared Library

Application

Linux Kernel

read(), write(), ioctl()

TCP (local/remote)

● Existing applications depending on 
shared library and Linux APIs for 
networking, serial ports, file 
system, etc.

● Kernel driver for time critical radio 
control and application specific 
interfaces.



Operating System Wish List
● Open source
● Available for STM32
● As close to Linux as possible
● Drivers for RS-232, RS-485, microSD, GPIOs, USB, and Ethernet
● Networking support (TCP/UDP)
● Web server



● NuttX seemed to be the perfect fit, but...
– There was no big organization behind it
– There was no big user group
– The future was unclear

● Due to our previous good experience 
with open source software we decided
to build a prototype.

● After a few days we had a basic but working RFID reader! 

Selecting NuttX (this was 2013)



Our Implementation



Hardware Examples

RFID Reader with NuttX (2013) RFID Reader with NuttX + Linux (2018)



ApplicationApplication

Modified Software Architecture

Kernel Driver

Daemon

Shared Library

Applications

Linux Kernel

read(), write(), ioctl()

TCP (local/remote)
ApplicationApplication

NuttX Driver

Shared Library

NuttX Tasks

NuttX

read(), write(), ioctl()

TCP (remote)



NuttX + Linux

● Linux system communicates with 
NuttX system over on-board USB

● Applications and web interface 
compiles from the same code for 
both NuttX and Linux

● The microcontroller binary is 
exactly the same in both systems



Demo



A Minimal Boot Loader



A Minimal Boot Loader
● Invisible during normal start
● Public key verification of stored firmware
● Web interface for firmware upgrade
● Fail safe environment for user settings 
● Minimal footprint (< 16 KB + environment)



Boot Loader Startup
● The boot loader is started if:

– The “Force boot loader” DIP switch is active
– The user has requested start of the boot loader from software

(through magic number in RAM)
– The RSA signature of the firmware is not ok

● In all other cases, the MCU is reset and the firmware is started. 



Web Interface for Firmware Upgrade



Fail Safe Environment
● Stores user settings as typical environment variables: NAME=VALUE
● Shared between boot loader and firmware (IP settings, etc.)
● Keeps settings when firmware is upgraded
● Guarantees that a value is either completely written or not written 

at all even if power is lost during a write
● Requires two erasable flash sectors with single byte write capability



Minimal Footprint

● Boot loader and environment fits in the 
first three 16 KB sectors on STM32F407

● These sectors are not overwritten when 
firmware is upgraded (all user settings 
are saved)

Sector 0 (16 KB)
Boot Loader

Sector 1 (16 KB)
Environment

Sector 2 (16 KB)
Environment



My NuttX Wish List



My NuttX Wish List
● Let NuttX (continue) to be “Linux on a microcontroller”

– Many developers are familiar with Linux
– Use similar APIs whenever possible

● The Linux features that were missing in NuttX became a way for us to 
differentiate our products. If available we would have used:
– Discovery protocols: UPnP, mDNS/DNS-SD (Bonjour/Avahi)
– Secure network protocols: TLS, HTTPS
– Network Time Protocol: NTP 



Thank you for listening!
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