
NuttX in
Long Range RFID Readers
Mattias Edlund
info@mattiase.com



Agenda
● RFID
● TagMaster
● Why NuttX?
● Our Implementation
● A Minimal Boot Loader
● My NuttX Wish List



RFID



RFID
● Radio Frequency IDentification
● Uses radio waves to identify and/or track tagged objects
● A system consists of readers and tags
● Tags contain electronically stored information
● Active tags have a local power source and an active transmitter
● Passive tags collect energy from the radio waves 

and do not have an active transmitter



RFID Frequencies

125 kHz 13.56 MHz 900 MHz 2.4 GHz 5.8 GHz



Backscattering

● A reader has a radio transmitter and 
receiver

● A tag does not have a radio 
transmitter

● Compare with a flashlight and a 
mirror



RAIN RFID
● Global standard for backscattering RFID @ 860-960 MHz
● Used to identify, locate and authenticate things
● Typical read range up to 10 meters



TagMaster



TagMaster

● Founded 1994 with HQ in Kista, Sweden
● Originally a 2.45 GHz RFID company
● Now a global group of companies, focusing on 

traffic and rail solutions for Smart Cities 



TagMaster - RAIN RFID Readers
XT Mini XT-1 XT-1 ETC XT-5 XT-5 ETC

NuttXNuttX NuttX + Linux



TagMaster - RAIN RFID Tags

HeadLight Tag

WindShield Tag ISO Card

Other tags...



TagMaster - RFID for Parking



TagMaster - RFID for Rail



TagMaster - RFID for Road Tolls

24/7



Why NuttX?



2005 Reader Platform Getting Old
● RF module approaching end of life
● Unused legacy RF interface
● Aging Linux system
● Diverging user requirements

– Most users want a cheap reader and don’t 
care about the Linux system.

– Many users only need a few of the interfaces
– Power users need the programmable Linux 

system but wants higher performance and 
more memory.Re

la
y

O
ut

pu
ts

In
pu

ts

12
-2

4 
VD

C
Ta

m
pe

r
W

ie
ga

nd

Et
he

rn
et

RS
-4

85

RS
-2

32

RS
-2

32

m
ic

ro
SD

U
SB

RF 
Module

Linux 
system

Unused 
legacy 

RF interface

Going back

to 2013



A New Scalable Architecture

Cortex-M4
MCU

RF

Re
la

y

In
pu

ts
Ta

m
pe

r
W

Ie
ga

nd

O
ut

pu
ts

RS
-2

32

Et
he

rn
et

m
ic

ro
SD

RS
-4

85

U
SB

 D
ev

ic
e

Cortex-A5
MPU

U
SB

 H
os

t

RAM

Flash

Cortex-M4
MCU

RF

Re
la

y

In
pu

ts
Ta

m
pe

r
W

Ie
ga

nd

O
ut

pu
ts

RS
-2

32

Et
he

rn
et

m
ic

ro
SD

RS
-4

85

U
SB

 D
ev

ic
e

Cortex-A5
MPU

U
SB

 H
os

t

RAM

Flash

Cortex-M4
MCU

RF

Re
la

y

In
pu

ts
Ta

m
pe

r
W

Ie
ga

nd

O
ut

pu
ts

RS
-2

32

Et
he

rn
et

m
ic

ro
SD

RS
-4

85

U
SB

 D
ev

ic
e

Cortex-A5
MPU

U
SB

 H
os

t

RAM

Flash



Needing a New Operating System

Cortex-M4
MCU

RF

Re
la

y

In
pu

ts
Ta

m
pe

r
W

Ie
ga

nd

O
ut

pu
ts

RS
-2

32

Et
he

rn
et

m
ic

ro
SD

RS
-4

85

U
SB

 D
ev

ic
e

Cortex-A5
MPU

U
SB

 H
os

t

RAM

Flash

Cortex-M4
MCU

RF

Re
la

y

In
pu

ts
Ta

m
pe

r
W

Ie
ga

nd

O
ut

pu
ts

RS
-2

32

Et
he

rn
et

m
ic

ro
SD

RS
-4

85

U
SB

 D
ev

ic
e

Cortex-A5
MPU

U
SB

 H
os

t

RAM

Flash

Cortex-M4
MCU

RF

Re
la

y

In
pu

ts
Ta

m
pe

r
W

Ie
ga

nd

O
ut

pu
ts

RS
-2

32

Et
he

rn
et

m
ic

ro
SD

RS
-4

85

U
SB

 D
ev

ic
e

Cortex-A5
MPU

U
SB

 H
os

t

RAM

Flash



Shared Library

Application

Shared Library

Application

Existing Software Architecture

Kernel Driver

Daemon

Shared Library

Application

Linux Kernel

read(), write(), ioctl()

TCP (local/remote)

● Existing applications depending on 
shared library and Linux APIs for 
networking, serial ports, file 
system, etc.

● Kernel driver for time critical radio 
control and application specific 
interfaces.



Operating System Wish List
● Open source
● Available for STM32
● As close to Linux as possible
● Drivers for RS-232, RS-485, microSD, GPIOs, USB, and Ethernet
● Networking support (TCP/UDP)
● Web server



● NuttX seemed to be the perfect fit, but...
– There was no big organization behind it
– There was no big user group
– The future was unclear

● Due to our previous good experience 
with open source software we decided
to build a prototype.

● After a few days we had a basic but working RFID reader! 

Selecting NuttX (this was 2013)



Our Implementation



Hardware Examples

RFID Reader with NuttX (2013) RFID Reader with NuttX + Linux (2018)



ApplicationApplication

Modified Software Architecture

Kernel Driver

Daemon

Shared Library

Applications

Linux Kernel

read(), write(), ioctl()

TCP (local/remote)
ApplicationApplication

NuttX Driver

Shared Library

NuttX Tasks

NuttX

read(), write(), ioctl()

TCP (remote)



NuttX + Linux

● Linux system communicates with 
NuttX system over on-board USB

● Applications and web interface 
compiles from the same code for 
both NuttX and Linux

● The microcontroller binary is 
exactly the same in both systems



Demo



A Minimal Boot Loader



A Minimal Boot Loader
● Invisible during normal start
● Public key verification of stored firmware
● Web interface for firmware upgrade
● Fail safe environment for user settings 
● Minimal footprint (< 16 KB + environment)



Boot Loader Startup
● The boot loader is started if:

– The “Force boot loader” DIP switch is active
– The user has requested start of the boot loader from software

(through magic number in RAM)
– The RSA signature of the firmware is not ok

● In all other cases, the MCU is reset and the firmware is started. 



Web Interface for Firmware Upgrade



Fail Safe Environment
● Stores user settings as typical environment variables: NAME=VALUE
● Shared between boot loader and firmware (IP settings, etc.)
● Keeps settings when firmware is upgraded
● Guarantees that a value is either completely written or not written 

at all even if power is lost during a write
● Requires two erasable flash sectors with single byte write capability



Minimal Footprint

● Boot loader and environment fits in the 
first three 16 KB sectors on STM32F407

● These sectors are not overwritten when 
firmware is upgraded (all user settings 
are saved)

Sector 0 (16 KB)
Boot Loader

Sector 1 (16 KB)
Environment

Sector 2 (16 KB)
Environment



My NuttX Wish List



My NuttX Wish List
● Let NuttX (continue) to be “Linux on a microcontroller”

– Many developers are familiar with Linux
– Use similar APIs whenever possible

● The Linux features that were missing in NuttX became a way for us to 
differentiate our products. If available we would have used:
– Discovery protocols: UPnP, mDNS/DNS-SD (Bonjour/Avahi)
– Secure network protocols: TLS, HTTPS
– Network Time Protocol: NTP 



Thank you for listening!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

