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What is it ?

A very simple personal computer

Modern construction, contemporary interfaces

Familiar “vintage” feel

~1985 processor /OS functionality / performance

Inexpensive, modular, portable

 Maker-friendly



  

Why ?

 I miss the old PCs, DOS, CP/M, etc.
 I like the Maker & Retro movements, I like Lisp
 Make the machine I want for the system I want
 Make the system I want for the machine I want
 With the right recipe, we DON'T need more than 

640 K (but we can have 16 M if we want)
 Tired of sacrificing quality for the sake of 

standards / compatibility, I think we can do better
 Freedom from the cost of conformity



  

Like early (micro) computers ...

 Text, single thread UI metaphor
 Simple, real, memory model
 CPU, terminal, disk, I/O
 Very narrow connection to “OS” and machine
 Trivially portable
 Your program does, and owns, it all
 Or it's just nice simple hardware for any OS



  

… in a modern computing fabric

 50 MHz micro-controller/processor SOC
 4 layer SMT business card
 USB/UART console, USB keyboard
 SPI uSD
 uC GPIO
 High density Hirose expansion board connector
 Jumper-less configuration sensing, control
 Low power (150/250 mA CPU/full system)



  

Why Lisp ? What's Cool ?

 Everything just fits, “working code” works 
everywhere, every time. Done, move on.

 Understand what your program is doing, in the 
abstract and concrete, reliably reason about it 
(but sometimes it's like doing integrals)

 Brevity, high semantic “energy density”
 Closures, continuations, and macros
 Smallest/easiest functionally complete system



  

MakerLisp Details

 Small, light, fast
 SECD, Scheme evaluation model
 Written in C, and Lisp (functions, macros)
 Blend of Common Lisp, Scheme, and C
 Very good for very small machines
 Target Vintage Embedded Makers
 Give Forth and CP/M fans something fun to play 

with. Runs on Linux, too



  

Machine

  50 MHz eZ80: uP with uC-style peripherals/GPIO
  Business card / expansion board
  CPU / terminal system
  VGA with 64 color code page 437 text display
  USB keyboard
  Good for CP/M or embedded cross dev, too
  Not Arduino, not Raspberry Pi, not IOT
  Modular, breadboard-connected, 1980's PC



  

Language

 MakerLisp Quick Reference
  No strings, just symbols
  cats, car, cdr on symbols
  (eval expr k)

https://img1.wsimg.com/blobby/go/72a1c0e7-ca37-40c1-a729-18ba8ef5064a/downloads/1d2e4n0ml_908965.pdf


  

“Low level” Macros

 Can boggle the mind, but
 Universal program/language extension tool
 As long as you stay in Lisp's (nearly no) syntax
 A macro is a Lisp function that creates a Lisp 

expression, from its (unevaluated) arguments
 And then evaluates that expression, “in line”, in 

place of the original macro application
 Simplified, multi-level backquote



  

Features / Utilities

  “Auto-load”
  Forget, setetop
  Macro Expander
  Tracer
  Debugger
  Many examples of language use, because ...
  Higher level forms are macros and functions



  

Features / “Bare Metal”

  Direct access to machine registers, from Lisp
  No cache, no virtual memory, just fast SRAM
  Breaks/Errors/Events interceptible by Lisp code
  Low latency GC, once top is “corraled”
  Add primitives at will, easily, in C
  Foreign function interface to libC, or other C



  

JIT Interpreter

 Lisp expressions expanded into VM instruction 
sequence sufficient to continue execution (basic 
block, decision point, etc.)

 VM instructions chosen to effect evaluation in 
the SECD machine model

 VM instructions patched in, replace Lisp code
 Simple expressions and macros are “inlined”
 Continue with VM, until next “uncracked” Lisp



  

SECD Virtual Machine

 S – stack (value value … )
 E – environment

 (((x . 1) (y . 2)) ((z . 3) (h . 99)))
 C – control/code/command

 List of VM instructions to execute
 D - “dump” - list/stack of S,E,C frames



  

SECD Virtual Machine

 Completely canonical SECD, but list surgery 
done where effects are equivalent

 TCO, naturally
 “Full” (is there any other kind ?) continuations
 ALL data on the heap
 () - list end, expression end VM instruction



  

Implementation – GC

 Cheney copying collector
 Reader and some primitives use other side
 Old “generation” is “eternal” top environment
 “Write barrier” is change in top environment
 Copy top, mark end, split the rest in two
 Copy the rest of the roots
 Don't have to collect top again until it changes
 Guard page, check between “basic blocks” 



  

Implementation – Break/Errors

 Exceptions and errors create a value of a 
symbol, which is the error message

 Lisp code can specify a continuation to be 
applied in case of any error/exception

 ^C breaks are just the error “^C”
 Interrupts (will be) done similarly
 Breaks / interrupts can be deferred



  

Implementation – Backquote

With one level, works just like any other
But, each backquote observes every leading (left) 
unquote in the expression it is given, regardless 
of other backquotes inside the expression

When nesting, add “ ,' “ as many times as 
necessary to defer to the right depth

Smaller implementation, simpler rule to follow
`(global ,f (macro args 
`(loadapply ,file ,f ,',@args)))



  

Performance comparisons

 30 times slower than C
 3 times slower than Forth
 3 times faster than Python
 Fact, Fib, Tak
 Clock for clock, 2x ? other not-so-JIT Lisps
 Comparable to 'FemtoLisp' (different kind of JIT)
 Slower than fully-compiled Lisps
 “Lispier”, more leverage, than Forth or Python



  

Because of Lisp ...

 Need more RAM, less ROM
 Don't care so much about other ecosystem 

support, language is the ecosystem
 Simple, uniform memory hierarchy preferred
 CPU ISA not a factor
 Digi-Key search
 … but Z80 / CP/M was a nice surprise



  

Because of System ...

 JIT to threaded VM code, not binary
 Simple flat pointers, simple heap
 'forget' feature default
 Improved reader performance, symbol hash



  

Computer Science Education

 If kids must code …
 Law of primacy
 Distraction free
 Focus on essential ideas, not contingencies
 Don't saddle them with things to unlearn
 In the beginning, there were two choices
 One led to 50 years of learning the hard way



  

Besides Lisp ...

 CP/M running now
 Preliminary Nuttx port (thanks Greg !)
 Good for other things - there just isn't much to do, 

system resources mostly un-dedicated, system is 
not prematurely architect-ed 

 MakerLisp is portable C, runs on Linux, and soon, 
on Nuttx

 Fast cheap hardware for straight embedded, too
 I don't care, I'll help no matter what you want to do



  

Demonstration / Q&A

 fact – cat, trace, debug
 + expanded
 Blinky
 shyard, oshyard (objects)
 Yes, you can have one if you'd like

CPU: $129.00 ($75 special Lisp/Functional Programming Group Mass Buy Offer)

I/O expansion: $89.00

USB: $70.00

VGA: $79.00

Enclosure: $99.00

System: $425.00

Prices will come down, soon



  

Evaluation Scheme

 1. Constant ? “Quote” Value
 2. Symbol ? Look up value of variable
 3. List ?

 a.  special form ? "call/cc", "define", "if", "lambda", 
"macro", "progn", "quote", "setq"

 b. Macro application ?
 c. Function (primitive or abstraction) application

 Anything else is an error



  

Applying a Function

 Call site: empty stack, evaluate function object 
and arguments, then VM instruction “apply”

 Apply: primitive function ? just go
 Abstraction: recover the environment, bind the 

values on the stack to the parameters, extend 
environment with this new lexical level, set C to 
code body, continue



  

VM commands/instructions
 C_APPLY
 C_ARGC
 C_CONTINUE
 C_DEFINE
 C_END
 C_EVALC
 C_GET00
 C_GET10
 C_GET20
 C_GETB
 C_GETD
 C_GETL
 C_JUMPC
 C_JUMPM
 C_LAMBDA
 C_LOAD
 C_LOADC 
 C_MACRO 
 C_MAKECC
 C_QUOTE
 C_SELECT
 C_SETB
 C_SETD
 C_SETL
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