

The MakerLisp Machine:
A New Platform For Classic Software

7/16/2019

makerlisp.com

Outline
I. MakerLisp Machine

A. What is it ?

B. Why ?

C. System parallels with early 80's microcomputers

D. Modern materials and methods used

II. MakerLisp

A. Why Lisp ?

B. What is MakerLisp ?

C. How the language choice influenced the system design

D. How the system design influenced language implementation

E. Fundamental computer science education

III. Why is this a good machine for other things too ?

A. CP/M, CP/M-ish, DOS-ish

B. Nuttx, or other Unix-ish OS

C. Straight monolithic embedded work

IV. Q&A, some demos

What is it ?

A very simple personal computer

Modern construction, contemporary interfaces

Familiar “vintage” feel

~1985 processor /OS functionality / performance

Inexpensive, modular, portable

 Maker-friendly

Why ?

 I miss the old PCs, DOS, CP/M, etc.
 I like the Maker & Retro movements, I like Lisp
 Make the machine I want for the system I want
 Make the system I want for the machine I want
 With the right recipe, we DON'T need more than

640 K (but we can have 16 M if we want)
 Tired of sacrificing quality for the sake of

standards / compatibility, I think we can do better
 Freedom from the cost of conformity

Like early (micro) computers ...

 Text, single thread UI metaphor
 Simple, real, memory model
 CPU, terminal, disk, I/O
 Very narrow connection to “OS” and machine
 Trivially portable
 Your program does, and owns, it all
 Or it's just nice simple hardware for any OS

… in a modern computing fabric

 50 MHz micro-controller/processor SOC
 4 layer SMT business card
 USB/UART console, USB keyboard
 SPI uSD
 uC GPIO
 High density Hirose expansion board connector
 Jumper-less configuration sensing, control
 Low power (150/250 mA CPU/full system)

Why Lisp ? What's Cool ?

 Everything just fits, “working code” works
everywhere, every time. Done, move on.

 Understand what your program is doing, in the
abstract and concrete, reliably reason about it
(but sometimes it's like doing integrals)

 Brevity, high semantic “energy density”
 Closures, continuations, and macros
 Smallest/easiest functionally complete system

MakerLisp Details

 Small, light, fast
 SECD, Scheme evaluation model
 Written in C, and Lisp (functions, macros)
 Blend of Common Lisp, Scheme, and C
 Very good for very small machines
 Target Vintage Embedded Makers
 Give Forth and CP/M fans something fun to play

with. Runs on Linux, too

Machine

 50 MHz eZ80: uP with uC-style peripherals/GPIO
 Business card / expansion board
 CPU / terminal system
 VGA with 64 color code page 437 text display
 USB keyboard
 Good for CP/M or embedded cross dev, too
 Not Arduino, not Raspberry Pi, not IOT
 Modular, breadboard-connected, 1980's PC

Language

 MakerLisp Quick Reference
 No strings, just symbols
 cats, car, cdr on symbols
 (eval expr k)

https://img1.wsimg.com/blobby/go/72a1c0e7-ca37-40c1-a729-18ba8ef5064a/downloads/1d2e4n0ml_908965.pdf

“Low level” Macros

 Can boggle the mind, but
 Universal program/language extension tool
 As long as you stay in Lisp's (nearly no) syntax
 A macro is a Lisp function that creates a Lisp

expression, from its (unevaluated) arguments
 And then evaluates that expression, “in line”, in

place of the original macro application
 Simplified, multi-level backquote

Features / Utilities

 “Auto-load”
 Forget, setetop
 Macro Expander
 Tracer
 Debugger
 Many examples of language use, because ...
 Higher level forms are macros and functions

Features / “Bare Metal”

 Direct access to machine registers, from Lisp
 No cache, no virtual memory, just fast SRAM
 Breaks/Errors/Events interceptible by Lisp code
 Low latency GC, once top is “corraled”
 Add primitives at will, easily, in C
 Foreign function interface to libC, or other C

JIT Interpreter

 Lisp expressions expanded into VM instruction
sequence sufficient to continue execution (basic
block, decision point, etc.)

 VM instructions chosen to effect evaluation in
the SECD machine model

 VM instructions patched in, replace Lisp code
 Simple expressions and macros are “inlined”
 Continue with VM, until next “uncracked” Lisp

SECD Virtual Machine

 S – stack (value value …)
 E – environment

 (((x . 1) (y . 2)) ((z . 3) (h . 99)))
 C – control/code/command

 List of VM instructions to execute
 D - “dump” - list/stack of S,E,C frames

SECD Virtual Machine

 Completely canonical SECD, but list surgery
done where effects are equivalent

 TCO, naturally
 “Full” (is there any other kind ?) continuations
 ALL data on the heap
 () - list end, expression end VM instruction

Implementation – GC

 Cheney copying collector
 Reader and some primitives use other side
 Old “generation” is “eternal” top environment
 “Write barrier” is change in top environment
 Copy top, mark end, split the rest in two
 Copy the rest of the roots
 Don't have to collect top again until it changes
 Guard page, check between “basic blocks”

Implementation – Break/Errors

 Exceptions and errors create a value of a
symbol, which is the error message

 Lisp code can specify a continuation to be
applied in case of any error/exception

 ^C breaks are just the error “^C”
 Interrupts (will be) done similarly
 Breaks / interrupts can be deferred

Implementation – Backquote

With one level, works just like any other
But, each backquote observes every leading (left)
unquote in the expression it is given, regardless
of other backquotes inside the expression

When nesting, add “ ,' “ as many times as
necessary to defer to the right depth

Smaller implementation, simpler rule to follow
`(global ,f (macro args
`(loadapply ,file ,f ,',@args)))

Performance comparisons

 30 times slower than C
 3 times slower than Forth
 3 times faster than Python
 Fact, Fib, Tak
 Clock for clock, 2x ? other not-so-JIT Lisps
 Comparable to 'FemtoLisp' (different kind of JIT)
 Slower than fully-compiled Lisps
 “Lispier”, more leverage, than Forth or Python

Because of Lisp ...

 Need more RAM, less ROM
 Don't care so much about other ecosystem

support, language is the ecosystem
 Simple, uniform memory hierarchy preferred
 CPU ISA not a factor
 Digi-Key search
 … but Z80 / CP/M was a nice surprise

Because of System ...

 JIT to threaded VM code, not binary
 Simple flat pointers, simple heap
 'forget' feature default
 Improved reader performance, symbol hash

Computer Science Education

 If kids must code …
 Law of primacy
 Distraction free
 Focus on essential ideas, not contingencies
 Don't saddle them with things to unlearn
 In the beginning, there were two choices
 One led to 50 years of learning the hard way

Besides Lisp ...

 CP/M running now
 Preliminary Nuttx port (thanks Greg !)
 Good for other things - there just isn't much to do,

system resources mostly un-dedicated, system is
not prematurely architect-ed

 MakerLisp is portable C, runs on Linux, and soon,
on Nuttx

 Fast cheap hardware for straight embedded, too
 I don't care, I'll help no matter what you want to do

Demonstration / Q&A

 fact – cat, trace, debug
 + expanded
 Blinky
 shyard, oshyard (objects)
 Yes, you can have one if you'd like

CPU: $129.00 ($75 special Lisp/Functional Programming Group Mass Buy Offer)

I/O expansion: $89.00

USB: $70.00

VGA: $79.00

Enclosure: $99.00

System: $425.00

Prices will come down, soon

Evaluation Scheme

 1. Constant ? “Quote” Value
 2. Symbol ? Look up value of variable
 3. List ?

 a. special form ? "call/cc", "define", "if", "lambda",
"macro", "progn", "quote", "setq"

 b. Macro application ?
 c. Function (primitive or abstraction) application

 Anything else is an error

Applying a Function

 Call site: empty stack, evaluate function object
and arguments, then VM instruction “apply”

 Apply: primitive function ? just go
 Abstraction: recover the environment, bind the

values on the stack to the parameters, extend
environment with this new lexical level, set C to
code body, continue

VM commands/instructions
 C_APPLY
 C_ARGC
 C_CONTINUE
 C_DEFINE
 C_END
 C_EVALC
 C_GET00
 C_GET10
 C_GET20
 C_GETB
 C_GETD
 C_GETL
 C_JUMPC
 C_JUMPM
 C_LAMBDA
 C_LOAD
 C_LOADC
 C_MACRO
 C_MAKECC
 C_QUOTE
 C_SELECT
 C_SETB
 C_SETD
 C_SETL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

