
  

The MakerLisp Machine:
A New Platform For Classic Software

7/16/2019

makerlisp.com



  

Outline
I. MakerLisp Machine

A. What is it ?

B. Why ?

C. System parallels with early 80's microcomputers

D. Modern materials and methods used

II. MakerLisp

A. Why Lisp ?

B. What is MakerLisp ?

C. How the language choice influenced the system design

D. How the system design influenced language implementation

E. Fundamental computer science education

III. Why is this a good machine for other things too ?

A. CP/M, CP/M-ish, DOS-ish

B. Nuttx, or other Unix-ish OS

C. Straight monolithic embedded work

IV. Q&A, some demos



  

What is it ?

A very simple personal computer

Modern construction, contemporary interfaces

Familiar “vintage” feel

~1985 processor /OS functionality / performance

Inexpensive, modular, portable

 Maker-friendly



  

Why ?

 I miss the old PCs, DOS, CP/M, etc.
 I like the Maker & Retro movements, I like Lisp
 Make the machine I want for the system I want
 Make the system I want for the machine I want
 With the right recipe, we DON'T need more than 

640 K (but we can have 16 M if we want)
 Tired of sacrificing quality for the sake of 

standards / compatibility, I think we can do better
 Freedom from the cost of conformity



  

Like early (micro) computers ...

 Text, single thread UI metaphor
 Simple, real, memory model
 CPU, terminal, disk, I/O
 Very narrow connection to “OS” and machine
 Trivially portable
 Your program does, and owns, it all
 Or it's just nice simple hardware for any OS



  

… in a modern computing fabric

 50 MHz micro-controller/processor SOC
 4 layer SMT business card
 USB/UART console, USB keyboard
 SPI uSD
 uC GPIO
 High density Hirose expansion board connector
 Jumper-less configuration sensing, control
 Low power (150/250 mA CPU/full system)



  

Why Lisp ? What's Cool ?

 Everything just fits, “working code” works 
everywhere, every time. Done, move on.

 Understand what your program is doing, in the 
abstract and concrete, reliably reason about it 
(but sometimes it's like doing integrals)

 Brevity, high semantic “energy density”
 Closures, continuations, and macros
 Smallest/easiest functionally complete system



  

MakerLisp Details

 Small, light, fast
 SECD, Scheme evaluation model
 Written in C, and Lisp (functions, macros)
 Blend of Common Lisp, Scheme, and C
 Very good for very small machines
 Target Vintage Embedded Makers
 Give Forth and CP/M fans something fun to play 

with. Runs on Linux, too



  

Machine

  50 MHz eZ80: uP with uC-style peripherals/GPIO
  Business card / expansion board
  CPU / terminal system
  VGA with 64 color code page 437 text display
  USB keyboard
  Good for CP/M or embedded cross dev, too
  Not Arduino, not Raspberry Pi, not IOT
  Modular, breadboard-connected, 1980's PC



  

Language

 MakerLisp Quick Reference
  No strings, just symbols
  cats, car, cdr on symbols
  (eval expr k)

https://img1.wsimg.com/blobby/go/72a1c0e7-ca37-40c1-a729-18ba8ef5064a/downloads/1d2e4n0ml_908965.pdf


  

“Low level” Macros

 Can boggle the mind, but
 Universal program/language extension tool
 As long as you stay in Lisp's (nearly no) syntax
 A macro is a Lisp function that creates a Lisp 

expression, from its (unevaluated) arguments
 And then evaluates that expression, “in line”, in 

place of the original macro application
 Simplified, multi-level backquote



  

Features / Utilities

  “Auto-load”
  Forget, setetop
  Macro Expander
  Tracer
  Debugger
  Many examples of language use, because ...
  Higher level forms are macros and functions



  

Features / “Bare Metal”

  Direct access to machine registers, from Lisp
  No cache, no virtual memory, just fast SRAM
  Breaks/Errors/Events interceptible by Lisp code
  Low latency GC, once top is “corraled”
  Add primitives at will, easily, in C
  Foreign function interface to libC, or other C



  

JIT Interpreter

 Lisp expressions expanded into VM instruction 
sequence sufficient to continue execution (basic 
block, decision point, etc.)

 VM instructions chosen to effect evaluation in 
the SECD machine model

 VM instructions patched in, replace Lisp code
 Simple expressions and macros are “inlined”
 Continue with VM, until next “uncracked” Lisp



  

SECD Virtual Machine

 S – stack (value value … )
 E – environment

 (((x . 1) (y . 2)) ((z . 3) (h . 99)))
 C – control/code/command

 List of VM instructions to execute
 D - “dump” - list/stack of S,E,C frames



  

SECD Virtual Machine

 Completely canonical SECD, but list surgery 
done where effects are equivalent

 TCO, naturally
 “Full” (is there any other kind ?) continuations
 ALL data on the heap
 () - list end, expression end VM instruction



  

Implementation – GC

 Cheney copying collector
 Reader and some primitives use other side
 Old “generation” is “eternal” top environment
 “Write barrier” is change in top environment
 Copy top, mark end, split the rest in two
 Copy the rest of the roots
 Don't have to collect top again until it changes
 Guard page, check between “basic blocks” 



  

Implementation – Break/Errors

 Exceptions and errors create a value of a 
symbol, which is the error message

 Lisp code can specify a continuation to be 
applied in case of any error/exception

 ^C breaks are just the error “^C”
 Interrupts (will be) done similarly
 Breaks / interrupts can be deferred



  

Implementation – Backquote

With one level, works just like any other
But, each backquote observes every leading (left) 
unquote in the expression it is given, regardless 
of other backquotes inside the expression

When nesting, add “ ,' “ as many times as 
necessary to defer to the right depth

Smaller implementation, simpler rule to follow
`(global ,f (macro args 
`(loadapply ,file ,f ,',@args)))



  

Performance comparisons

 30 times slower than C
 3 times slower than Forth
 3 times faster than Python
 Fact, Fib, Tak
 Clock for clock, 2x ? other not-so-JIT Lisps
 Comparable to 'FemtoLisp' (different kind of JIT)
 Slower than fully-compiled Lisps
 “Lispier”, more leverage, than Forth or Python



  

Because of Lisp ...

 Need more RAM, less ROM
 Don't care so much about other ecosystem 

support, language is the ecosystem
 Simple, uniform memory hierarchy preferred
 CPU ISA not a factor
 Digi-Key search
 … but Z80 / CP/M was a nice surprise



  

Because of System ...

 JIT to threaded VM code, not binary
 Simple flat pointers, simple heap
 'forget' feature default
 Improved reader performance, symbol hash



  

Computer Science Education

 If kids must code …
 Law of primacy
 Distraction free
 Focus on essential ideas, not contingencies
 Don't saddle them with things to unlearn
 In the beginning, there were two choices
 One led to 50 years of learning the hard way



  

Besides Lisp ...

 CP/M running now
 Preliminary Nuttx port (thanks Greg !)
 Good for other things - there just isn't much to do, 

system resources mostly un-dedicated, system is 
not prematurely architect-ed 

 MakerLisp is portable C, runs on Linux, and soon, 
on Nuttx

 Fast cheap hardware for straight embedded, too
 I don't care, I'll help no matter what you want to do



  

Demonstration / Q&A

 fact – cat, trace, debug
 + expanded
 Blinky
 shyard, oshyard (objects)
 Yes, you can have one if you'd like

CPU: $129.00 ($75 special Lisp/Functional Programming Group Mass Buy Offer)

I/O expansion: $89.00

USB: $70.00

VGA: $79.00

Enclosure: $99.00

System: $425.00

Prices will come down, soon



  

Evaluation Scheme

 1. Constant ? “Quote” Value
 2. Symbol ? Look up value of variable
 3. List ?

 a.  special form ? "call/cc", "define", "if", "lambda", 
"macro", "progn", "quote", "setq"

 b. Macro application ?
 c. Function (primitive or abstraction) application

 Anything else is an error



  

Applying a Function

 Call site: empty stack, evaluate function object 
and arguments, then VM instruction “apply”

 Apply: primitive function ? just go
 Abstraction: recover the environment, bind the 

values on the stack to the parameters, extend 
environment with this new lexical level, set C to 
code body, continue



  

VM commands/instructions
 C_APPLY
 C_ARGC
 C_CONTINUE
 C_DEFINE
 C_END
 C_EVALC
 C_GET00
 C_GET10
 C_GET20
 C_GETB
 C_GETD
 C_GETL
 C_JUMPC
 C_JUMPM
 C_LAMBDA
 C_LOAD
 C_LOADC 
 C_MACRO 
 C_MAKECC
 C_QUOTE
 C_SELECT
 C_SETB
 C_SETD
 C_SETL


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

