## Designing an open source drone solution that's business friendly

NXP reference design for developing Small Autonomous Vehicles

lain Galloway iain.galloway@nxp.com

Drone Program Lead, Systems Innovation Automotive NXP Semiconductors Austin, TX

July 2019 | External Audience





Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2018 NXP B.V.

NXP Drone and Rover Program









Long flight Duration



VTOL transitioning Wing













#### Industry Trends: Commercial Application Taking Off and Industry Becoming Horizontally Integrated







| Marketplace / search   |       |       |       |  |  |  |
|------------------------|-------|-------|-------|--|--|--|
| Арр                    | Арр   |       | Арр   |  |  |  |
| Mission planning / UTM |       |       |       |  |  |  |
| Fleet                  | Fleet |       | Fleet |  |  |  |
| Flight stack           |       |       |       |  |  |  |
| ODM                    |       | ODM   |       |  |  |  |
| Compor                 | ents  | Comp. |       |  |  |  |









LuftTaxi AirTaxi

VTOL reduction in greenhouse gas Emissions: - 52% @60miles+ compared to ICE cars - 6% @60 miles+ BEV Starting for trips > 22 miles https://www.nature.com/articles/s41467-019-09426-0





### NXP Drone Reference design

#### Kit-HGDroneK66

- Complete low cost 'hobby' drone platform, but really an open design robot.
- 500mm size big enough for easy experimentation
- Complete system to test new components such as motor controllers with UAVCAN or secure authentication of battery
- Reuse of components for ground Rovers



### Complexity: FMU – Flight management Unit



#### More Complexity: Industrial Grade Drone - Modular with CAN and Ethernet





# How do we manage this complexity?

We're a semiconductor company, not a drone company

We want best in class, but we also want to provide accessible solutions



Look for the a well designed open source solution with **best in class**...

- ✓ Software
- Project management
- Ecosystem
- ✓ Governance
- ✓ Community
- Enterprise grade support

#### PX4 is an integrated open source software ecosystem



| Vehicle<br>Firmware                     | Communication                                                  | Ground Control Station         | Hardware                 |
|-----------------------------------------|----------------------------------------------------------------|--------------------------------|--------------------------|
| Autonomy                                | MICRO AIR VEHICLE COMMUNICATION PROTOCOL<br>Middleware<br>ROS2 | ΑΡΙ                            | NXP<br>RDDRONE<br>FMUK66 |
| Vision based localization and avoidance | iii 2                                                          | <dronecode sdk=""></dronecode> | Intel Aero               |

#### Leading commercial products and dev platforms based on PX4





## **QGroundControl**:

The opensource Ground Control Station

- Android, iOS, Windows, Linux and Mac
- For flying and mission planning
- Survey, mapping support
- Digital video streaming support
- UTM integration
- Open source and customizable









|               |                     |                  |              |        | QGround                                   | dControl v3.5.2                  |                       |                                                            |            |
|---------------|---------------------|------------------|--------------|--------|-------------------------------------------|----------------------------------|-----------------------|------------------------------------------------------------|------------|
| يه 🍫 🖸        | 🖪 🗟   🤜 🛪           | 💼 at 📋 N/A 🛚     | Manual Entso | chärft |                                           |                                  |                       | ex:                                                        |            |
| Vehicle Setup | Search:             | Clear            |              |        |                                           |                                  |                       | Tools                                                      |            |
| Summary       | Standard            | LKT2_OFJ_F_OFTE  |              |        | Gate size for or 3 non-zonter position re |                                  |                       |                                                            |            |
|               | Battery Calibration | EKF2_GPS_P_NOISE | 0.50 m       |        | Measurement noise for gps position        |                                  |                       |                                                            |            |
|               | Camera trigger      | EKF2 GPS V GATE  | 5.0 SD       |        | Gate size for GPS velocity fusion         |                                  |                       |                                                            |            |
| Fluggerätetyp | Commander           | EKE2_CPS_V_NOISE | 0.50 m/s     |        | Measurement noise for gps horizontal s    | velocity                         |                       |                                                            |            |
| ((=)) Sensors | Data Link Loss      | EKF2_GYR_B_NOISE | 0.001000 rad | d/s**2 | Process noise for IMU rate gyro bias pre  | ediction                         |                       |                                                            |            |
| Radio         | EKF2                | EKF2_GYR_NOISE   | 0.0150 rad/s |        | Rate gyro noise for covariance predictio  | 'n                               |                       |                                                            |            |
| 00.           |                     |                  |              |        |                                           |                                  |                       |                                                            |            |
| IUU Flugmodi  | D                   | ta Link Loss     |              | EVED   |                                           | 0.001000                         |                       | Description for Mill rate must bles prediction             |            |
| Power         |                     | ata LINK LOSS    |              | EKF2   | _GTK_B_NOISE                              | 0.001000 rad/                    | Sasz                  | Process holse for IMU rate gyro bias prediction            |            |
| Sicherheit    |                     | EKF2             |              | EKF2   | _GYR_NOISE                                | 0.0150 rad/s                     |                       | Rate gyro noise for covariance prediction                  |            |
| ┆┆╡ Tuning    |                     | Events           |              | EKF2   | _HDG_GATE                                 | 2.6 SD                           |                       | Gate size for magnetic heading fusion                      |            |
| Parameters    | Fai                 | ailure Detector  |              | EKF2   | _HEAD_NOISE                               | 0.30 rad                         |                       | Measurement noise for magnetic heading fusion              |            |
|               | E E                 | ollow target     |              | EKF2   | _HGT_MODE                                 | Barometric pre                   | ssure                 | Determines the primary source of height data used          | by the EKF |
|               |                     |                  | _            | EKF2   | _IMU_POS_X                                | 0.000 m                          |                       | X position of IMU in body frame                            |            |
|               |                     | GPS              |              | EKF2   | _IMU_POS_Y                                | 0.000 m                          |                       | Y position of IMU in body frame                            |            |
|               | GPS Fa              | ailure Navigat   | tion         | EKF2   | _IMU_POS_Z                                | 0.000 m                          |                       | Z position of IMU in body frame                            |            |
|               | Rauno Cambraunon    | EKER MONE TEST   | 1.0          |        | Vahiela menament tart throubeld           |                                  |                       |                                                            |            |
|               | Radio Switches      |                  | 100 m        |        | Measurement noise for non-aiding nos      | ition hold                       |                       |                                                            |            |
|               | Return Mode         | EKF2_NOAID_TOUT  | 5000000 uSe  | ic     | Maximum lapsed time from last fusion      | of measurements that constrain   | velocity drift before | the EKF will report the horizontal nav solution as invalid |            |
|               | Return To Land      | EKF2_OF_DELAY    | 5.0 ms       |        | Optical flow measurement delay relative   | e to IMU measurements Assumes    | s measurement is tir  | mestamped at trailing edge of integration period           |            |
|               | SD Logging          | EKF2_OF_GATE     | 3.0 SD       |        | Gate size for optical flow fusion         |                                  |                       |                                                            |            |
|               | Sensor Calibration  | EKF2_OF_N_MAX    | 0.50 rad/s   |        | Measurement noise for the optical flow    | sensor                           |                       |                                                            |            |
|               | Sensors             | EKF2_OF_N_MIN    | 0.15 rad/s   |        | Measurement noise for the optical flow    | sensor when it's reported qualit | y metric is at the ma | aximum                                                     |            |
|               | Serial              | EKF2_OF_POS_X    | 0.000 m      |        | X position of optical flow focal point in | body frame                       |                       |                                                            |            |
|               | Surtom              | FKF2 OF POS Y    | 0.000 m      |        | Y position of ontical flow focal point in | hody frame                       |                       |                                                            |            |

## What's the relationship between these parts?



Look for the a well designed open source solution with **best in class**...

- ✓ Software
- Project management
- Ecosystem
- ✓ Governance
- Community
- ✓ Enterprise grade support

## What's the relationship between these parts?







A neutral place where industry and community developers can work together to build the world's leading open UAV software platform Look for the a well designed open source solution with **best in class**...

- ✓ Software
- Project management
- Ecosystem
- ✓ Governance
- ✓ Community
- ✓ Enterprise grade support









## Back to the drone design...

We're a semiconductor company, not a drone company





## Additional Components

- Segger Jlink Mini EDU
- FTDI serial cable
- RC Remote RX/TX
- Telemetry Radio
- LiPo Battery Charger
- FCC, CE, RoHS, REACH
- Available direct and through distribution





#### RDDRONE-FMUK66 Flight Management Unit



#### **RDDRONE-FMUK66**



Working with opensource community allowed us to overcome significant challenges

We were introducing a **new processor** and modified architecture into the ecosystem

Needed support for underlying NuttX RTOS

NXP joined to support the community:

- $\checkmark$  Easily identify and hire experts
- $\checkmark$  Ease of engagement with experts
- ✓ Community feedback
- $\checkmark$  Rigorous flight testing program

#### Feedback: RDDRONE-FMUK66 Open and frank dialog helps



#### 100BaseT1 "2 wire ethernet"



- Automotive Rugged, robust, high ESD
- Lightweight connectors, wires, no magnetics
- 15 meter distance
- Automotive ethernet switch available
- Still regular ethernet media conversion by switch or back to back PHYs
- Attractive for high speed IP/Socket programming

- Higher bandwidth cameras or sensors
- Standard IP connection between FMU and Companion computer
- Tethered operation

#### Feedback: RDDRONE-FMUK66



UAVCAN V1 requests CAN-FD

## NXP's Future development with NuttX and PX4

Our engagement has been positive

We want to give back - where can we add value?



ARM7TDMI (NXP LPC214x, LPC2378,) ARM920T (Freescale i.MX1) ARM926EJS (NXP LPC31xx) ARM Cortex-A9 (NXP/Freescale i.MX6) ARM Cortex-M0 (NXP/Freescale KL25Z, KL26Z) ARM Cortex-M3 (NXP LPC17xx,) ARM Cortex-M4 (NXP LPC43xx/LPC54xx, Freescale Kinetis K20/K28/K40/60/64/66) ARM Cortex-M7 (NXP i.MX RT)

Freescale M68HCS12



NXP RISC-V? (RI5CY core)

Automotive S32K ARM M4, M7 ?

> NXP LPC5500, i.MX 600 ? (M33 core)



Paul

Auterion

### PX4 v1.10: Release September, 2019



#### RDDRONE-ESC32K NXP-Flyduino/FETTEC S32K based "automotive" motor controller







UAVCAN initiative

#### RDDRONE-IOT HoverGames enables mobile IoT

Integration with Rapid IOT Platform

- CAN BUS UAVCAN
  connectors
- VSCP.org project
- MAVLINK example software
- Color graphics LCD
- Touch, Capsense, buttons
- Onboard 802.15.4 Radio
- IPV6, 6lowpan, Thread radio
- Bluetooth, Zigbee, KW41
- Pluggable "Click" modules



UAVCAN initiative

#### MikroElektronika Ecosystem

#### Over 450+ Click boards<sup>™</sup> with mikroBUS<sup>™</sup> connector and drivers



Gas Sensors, UV, IR, LORA, SigFox, Cellular, Lighting...

## RDDRONE-BMS772 (Automotive) Intelligent Battery Management for Small Systems



- Automotive S32K MCU development
- Auto and consumer grade BOM
- Low Cost ~\$20
- Up to 6S battery (25.2V)
- 75A continuous 200A peak
- CAN-FD/UAVCAN V1.0
- Secure authentication
- Secure event count and flags
- NFC for manifest log and settings
- NuttX ??

#### **RDDRONE-BMS772 BMS Module**





## HoverGames

#### For Inspiration!



#### **Hovergames Challenges**

- Coding challenges with societal impact theme
- Challenge 1 theme is "Fight fire with Flyers"
- Introduction to NuttX and the PX4 opensource community
- Learning opportunity using a complete autonomous development platform and infrastructure
- Desirable new technologies are continually introduced and enabled

#### www.HoverGames.com



## HOVERGAMES

## FIGHT FIRE WITH FLYERS

#### https://www.hackster.io/contests/hovergames

Whether man-made or natural, fires are difficult to predict and control. Fires cause billions in damage, destroy entire towns and forests and put countless lives in danger, including first responders at the front line.

#### HOVERGAMES IS YOUR OPPORTUNITY TO HELP

The objective of this contest is to build a solution that enables your HoverGames drone to assist fire fighters in their duties – in any way you can imagine, from wildfires to urban fires.







Rapid IoT + RDDrone-IOT adapter board

PixyCam 2 Heat Sensor

### First Flyers for Hovergames Challenges

#### Internal NXP participants 180 engineers and programmers

- 50 Teams
- 30 countries

Great exposure to NuttX RTOS and PX4 internal to the company





Iain Galloway iain.galloway@nxp.com

www.HoverGames.com