

NuttX RTOS

Gregory Nutt

Beginnings

2000

1990

1980

1970

Academia

Military Avionics
Commercial Electronics

Open Source

Math/Physics

Math
Digital Signal Processing

Neuro-
science

Computer Science

First mult-tasking, pre-emptive RTOS, 1982

Hewlett Packard

LaserJet POSIX RTOS, 1996

About MeAbout MeAbout MeAbout Me

Ridgerun.com

NuttX Release to Open Source, 2007

Costa Rica

NX-Engineering, SA

LaserJet Firmware Architect

Cooperative Schedulers

Cooperative Schedulers

Graduate School DaysGraduate School DaysGraduate School DaysGraduate School Days

LINC

LINC-8

PDP-8/e

PDP-8/i

TRS-80
Model 1

Hardware of First RTOSHardware of First RTOSHardware of First RTOSHardware of First RTOS

Single Interrupt Handler

High Priority

Response Latency

Response Latency

No OS: Extensive interrupt
processing, prioritized
interrupts and, maybe, a main
loop.

No OS: Extensive interrupt
processing, prioritized
interrupts and, maybe, a main
loop.

Medium Priority

Low Priority

Deterministic? No
Meet Deadlines? Maybe
Deterministic? No
Meet Deadlines? Maybe

Interrupt Driven – OS #1 (Bare Metal)Interrupt Driven – OS #1 (Bare Metal)Interrupt Driven – OS #1 (Bare Metal)Interrupt Driven – OS #1 (Bare Metal)

Problems: Stacked, Can lose interrupts.
No waiting, all run to completion.
Problems: Stacked, Can lose interrupts.
No waiting, all run to completion.

Main Loop – OS #1 (Cont'd)Main Loop – OS #1 (Cont'd)Main Loop – OS #1 (Cont'd)Main Loop – OS #1 (Cont'd)

Main,
Background

Loop

Task G

Task F

Task E

Task A

Task B

Task C

● Round-Robin
● Non-premptive
● Cooperative Scheduling
● State machines
● Ad hoc strategies

Task D

Non-deterministic!

Non-deterministic!

Real Time == DeterministicReal Time == DeterministicReal Time == DeterministicReal Time == Deterministic

Real time does not mean “fast”Real time does not mean “fast”

Stimulus Response

Response Latency

Real time systems have Deadlines Real time systems have Deadlines

Deadline

Main Loop with Priority Queue – OS #2Main Loop with Priority Queue – OS #2Main Loop with Priority Queue – OS #2Main Loop with Priority Queue – OS #2

Main,
Background

Loop

Still Non-deterministic!
High priority work still has to wait for
work in progress.

Still Non-deterministic!
High priority work still has to wait for
work in progress.

Interrupt
Brief interrupt processing,
only queues work
Brief interrupt processing,
only queues work

Lowest Prio

Highest Prio

Task XTask X

Main Loop with Cooperative Scheduler– OS #3Main Loop with Cooperative Scheduler– OS #3Main Loop with Cooperative Scheduler– OS #3Main Loop with Cooperative Scheduler– OS #3
Task X

switch (state)
 {
 case state A:
 Start event processing;
 state = state B;
 Reschedule;
 Break;

 Case state B:
 Continue event processing;
 State = state C;
 Reschedule;
 Break;

 Case state C:
 Finish event processing;
 State = state X;
 Break;

 Case state X:
 Break;
 }

● Non-premptive
● Cooperative Scheduling

● Non-premptive
● Cooperative Scheduling

● Divide event processing up into pieces
● Manage with a state machine
● Reschedule to allow higher priority tasks
● Other ad hoc strategies

● Divide event processing up into pieces
● Manage with a state machine
● Reschedule to allow higher priority tasks
● Other ad hoc strategies

Still Non-deterministic!
High priority work still has to wait for
work in progress.

Still Non-deterministic!
High priority work still has to wait for
work in progress.

Foreground / Backgound Main Loops – OS #4Foreground / Backgound Main Loops – OS #4Foreground / Backgound Main Loops – OS #4Foreground / Backgound Main Loops – OS #4

Background
Main Loop

Paritially DeterministicParitially Deterministic

Context
Switch!
Context
Switch!

Foreground
Main Loop

Pre-emptive OS – OS #5Pre-emptive OS – OS #5Pre-emptive OS – OS #5Pre-emptive OS – OS #5

Ready-to-run

Running

Blocked

The DEC connection The DEC connection

Fully pre-emptible
Context switch:
Think setjmp/longjmp on steriods

Fully pre-emptible
Context switch:
Think setjmp/longjmp on steriods

Pending
(NuttX)

Task Start

Highest Priority
Ready-to-run task
is Running

Highest Priority
Ready-to-run task
is Running

Wait for signal,
semaphore,
message queue,
page fill,
stopped, etc.

Wait for signal,
semaphore,
message queue,
page fill,
stopped, etc.

Task Control Block (TCB)Task Control Block (TCB)

States represented by lists of TCBsStates represented by lists of TCBs

Task
Suspended,
Waiting for
Next event

Task
Suspended,
Waiting for

event

RTOS Interrupt ProcessingRTOS Interrupt ProcessingRTOS Interrupt ProcessingRTOS Interrupt Processing

Interrupt
Handler

Task awakened,
Processes interrupt related event

RTOS Scheduler
Reassess next

ready-to-run thread

RTOS Scheduler
Reassess next

ready-to-run thread

Signals thread via IPC

Resumes thread if highest
priority, ready-to-run

Stimulus Response

RTOS way:
 Minimal work performed in interrupt handlers
 Interrupt handlers only signal events to tasks
 RTOS scheduler manages real-time behavior
 Prioritized interrupts replaced with prioritized tasks
 No benefit in nesting interrupts (usually)

RTOS way:
 Minimal work performed in interrupt handlers
 Interrupt handlers only signal events to tasks
 RTOS scheduler manages real-time behavior
 Prioritized interrupts replaced with prioritized tasks
 No benefit in nesting interrupts (usually)

RTOS InterruptsRTOS InterruptsRTOS InterruptsRTOS Interrupts

No OS way: Extensive interrupt processing, prioritized interrupts and,
maybe, a main loop.
No OS way: Extensive interrupt processing, prioritized interrupts and,
maybe, a main loop.

Signal Task ASignal Task A
Signal Task BSignal Task B

Signal Task CSignal Task C

Signal Task DSignal Task D
Signal Task ESignal Task E

Interrupt Interrupt Interrupt Interrupt Interrupt

SMPSMPSMPSMP

Ready-to-run

Blocked

Running
CPU 3

Running
CPU 2

Running
CPU 1

Running

CPU 0
CPU 1

CPU 2 CPU n

Pending

AffinityAffinity

n Highest Priority
Ready-to-run tasks
are Running

n Highest Priority
Ready-to-run tasks
are Running

SpinlocksSpinlocks

Assigned Task List
(not shown)
Assigned Task List
(not shown)

Rate Montonic SchedulingRate Montonic SchedulingRate Montonic SchedulingRate Montonic Scheduling

Can achieve Real-Time behavior under
certain circumstances

● Strict priority scheduling
● Static priorities
● Priorities assigned according to
● Rate Monotonic conventions

Can achieve Real-Time behavior under
certain circumstances

● Strict priority scheduling
● Static priorities
● Priorities assigned according to
● Rate Monotonic conventions

Threads with shorter periods/
deadlines are assigned the
highest priorities.

Threads with shorter periods/
deadlines are assigned the
highest priorities.

And this unrealistic assumption:
● No resource sharing
● No waiting for resources
● No semaphores or locks
● No critical sections
● No disabling pre-emption
● No disabling interrupts

Why POSIX?Why POSIX?Why POSIX?Why POSIX?

At this point POSIX is the NuttX identity
 Portability
 Linux compatibility
 Complex build models: PROTECTED and KERNEL builds

At this point POSIX is the NuttX identity
 Portability
 Linux compatibility
 Complex build models: PROTECTED and KERNEL builds

Why not...
 Versus custom ad hoc OS interface
 POSIX device model vs HAL
 Like simpler FreeRTOS, ChibiOS, Zephyr, mbed, RIOT, etc.

Why not...
 Versus custom ad hoc OS interface
 POSIX device model vs HAL
 Like simpler FreeRTOS, ChibiOS, Zephyr, mbed, RIOT, etc.

Work QueuesWork Queues

Worker
Thread

“Bottom half”

 Priority Qeue
 Non-premptive
 Very high priority
 Inappropriate for

 Priority Qeue
 Non-premptive
 Very high priority
 Inappropriate for

extended processing

Prioritized
Work
Queue

Use with care!Use with care!
Non-deterministic!

Interrupt
Handler

“Top Half”

Defer more
extended
interrupt
processing to
Worker Thread

High Priority
Work Queue
High Priority
Work Queue

High Priority
Work Queue
High Priority
Work Queue

Multiple Work QueuesMultiple Work QueuesMultiple Work QueuesMultiple Work Queues

High Priority
Work Queue
High Priority
Work Queue

Multiple
Low Priority

Work Queues

Multiple
Low Priority

Work Queues

 Single high priority work queue
 Intended for interrupt “bottom half”
 Should be highest priority

 Single high priority work queue
 Intended for interrupt “bottom half”
 Should be highest priority

 Multiple low priority work queues
 Support priority inheritance
 Use to implement asynchronous

I/O (AIO)

 Multiple low priority work queues
 Support priority inheritance
 Use to implement asynchronous

I/O (AIO)

P
R
I
O
R
I
T
Y

Thread poolThread pool

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

