
Built on NuttX
Flown on Drones

http://www.nscdg.com

Gouda, NL 07/17/2019

PX4 is a BSD licensed Open Source Autopilot
Website: https://px4.io Github: https://github.com/PX4

The PX4 project was started by Lorenz Meier in 2008 on and flown on Pixhawk

 Second generation Pixhawk drone – Zurich 2009

“A decade ago, little did I know that my student project at the Computer Vision and Geometry Lab at ETH
Zurich would end up becoming the de facto standard in the drone industry.” - Lorenz Meier

https://px4.io/
https://github.com/PX4

Pixhawk is an Open Hardware Reference Standard
Website: http://pixhawk.org Github: https://github.com/pixhawk

Open Hardware for Autonomous Aviation

FMUv2 Pixhawk 1
STM32F429/STM32F100

FMUv4 Pixhawk 3 Pro
STM32F469/STM32F100

FMUv3 Pixhawk 2
STM32F429/STM32F100

FMUv1 Pixhawk
STM32F407/STM32F100

FMUv4 Pixracer
STM32F427

http://pixhawk.org
https://github.com/pixhawk

What is an Open Hardware Reference Standard?
Website: https://dev.px4.io/v1.9.0/en/debug/reference-design.html

https://px4.io/

https://dev.px4.io/v1.9.0/en/debug/reference-design.html#reference_design_generations
https://px4.io/

What Happens when you create an
Open Hardware Reference Standard?

What Happens when you create an
Open Hardware Reference Standard?

Pixhawk FMUv{5:6}[X] Reference Standard
Current and Future FMU Versions

FMUv5X Pixhawk 5X
STM32F765/STM32F100

FMUv6 Pixhawk 6
STM32H753/STM32F100

FMUv5 Pixhawk 4
STM32F765/STM32F100 FMUv6X Pixhawk 6X

STM32H753/STM32F100

Prototype phase

PX4 on NuttX
Why PX4 Chose NuttX
● The BSD Licensing - “BSD licenses are a family of permissive free software licenses,

imposing minimal restrictions on the use and distribution of covered software. This is in
contrast to copyleft licenses, which have share-alike requirements. The original BSD license
was used for its namesake, the Berkeley Software Distribution (BSD)”

● “The Portable Operating System Interface (POSIX) is an IEEE standard that helps
compatibility and portability between operating systems. Theoretically,POSIX
compliant source code should be seamlessly portable. In the real world,
application transition often runs into system specific issues”

● Real Time OS

● The scalability and degree of freedom to which it can be modified to suit
application specific needs, from small footprint to large.

● Code Quality and conformity.

https://en.wikipedia.org/wiki/Permissive_free_software_license
https://en.wikipedia.org/wiki/Copyleft
https://en.wikipedia.org/wiki/Share-alike
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution

PX4 on NuttX
How is PX4 Built on NuttX
● PX4 drives the NuttX Makefile build system using make and cmake.

○ It is an out of tree build
○ We used to use NuttX make export

■ We now build the NuttX libraries as cmake projects.

● PX4 uses Cmake
○ “CMake is an extensible, open-source system that manages the build process in

an operating system and in a compiler-independent manner.”

● PX4 uses ccache
○ “ccache is a compiler cache. It speeds up recompilation by caching the

result of previous compilations and detecting when the same compilation
is being done again.”

● PX4 uses nija[build]
○ “Ninja is a small build system with a focus on speed. It differs from other

build systems in two major respects: it is designed to have its input files
generated by a higher-level build system, and it is designed to run builds as
fast as possible.”

PX4 on NuttX
It looks like Make on the command line

make help - list all targets
make px4_fmu-v5 - build PX4 for fmuv5 hardware
make nxp_fmurt1062-v1 - build PX4 for NXP 1060 RT hardware

Familiar but different
make px4_fmu-v5 oldconfig
make px4_fmu-v5 menuconfig

● We build what we can in parallel
● We drive the defconfig to .config process
● We dynamically add to the builtins
● We use the provided magic:

○ CONFIG_ARCH_BOARD_CUSTOM_DIR="../nuttx-config"
○ CONFIG_ARCH_BOARD_CUSTOM_NAME="px4"

PX4 on NuttX
We split the source and NuttX configuration. We build NuttX to libraries.
The board library in nuttx is empty!
Board source is built in PX4 and linked to the NuttX libraries.

PX4 on NuttX

https://docs.google.com/file/d/17YDQhjjx4b1q006snU7UHJsw_LtZ6KN5/preview

PX4 on NuttX
Test as you code
35 Complete builds in < 11 Minutes

Lean heavily on CI Tools:

Build all PRs - prevents merging code
breaks the build.

Run a style check - prevents merging
code that is not to the coding standard

PX4 on NuttX
Test as you fly
Lean heavily on CI Tools:

http://ci.px4.io:8080/blue/organizations/jenkins/PX4_misc%2FFirmware-hardware/detail/PR-12348/2/pipeline/300/

PX4 on NuttX

PX4 has been working on complete CI for NuttX

 20 Build configurations in < 4 minutes
 12-20 Seconds Each Per build of <board>/<config>!

How can we help?
PX4 team is willing to add AND Maintain full CI on NuttX
in tree.

But we need some changes to support it.
 Inclusion of yaml files and cmake

Add a versioning Knot linking apps to nuttx

PX4 on NuttX

Some cool PX4 apps

Fully nested prioritized interrupt structure.
Compile time Device Tree

Ideas for future

dmesg
hardfault_log
top
uORB

HardFault Debugging
David Sidrane

http://www.nscdg.com

Gouda, NL 07/17/2019

What is a HardFault?
Within NuttX, all roads lead to up_assert via the common vector

HardFault
MemManage
BusFault
UsageFault

Common causes:
● Both software and hardware can cause HardFaults
● Hardware accessing a peripheral that is not enabled -BusFault
● Executing a pure virtual function (AKA: null pointer execution)
● Dereferencing a null pointer
● Stack crash (AKA: stack smashing) or wild pointer corrupting data used

downstream

Common Vector up_assert

Scale of difficulty debugging a HardFault

Simple to debug:
(Repeatable occurence of HardFault)
● Hardware accessing a peripheral that is not enabled
● Executing a pure virtual function
● Dereferencing a null pointer

Complex to debug:
(random occurence of HardFault)
● Stack crash or wild pointer corrupting data used downstream
● Inappropriate hardware interrupt priority settings

The Evolution leading to the
Pixhawk debug adapter

Tools - HardFault debugging is not as difficult as it used to be

The old days: Current:
Bond-out InCurcuitEmulator (ICE) JTAG debugger
$15,000 USD $20.00 USD

=

Live and Postmortem Debugging
Live:
GNU ARM → GNU MCU Eclipse!

Set a breakpoint on up_hardfault and up_assert
Set the PC equal to the LR
Select assembly single step
And step to bx lr instruction in do_irq that will return you to the line of code
that caused the HardFault

Postmortem:
Reviewing the HardFault log
Choosing addresses in flash
And disassembling at those addresses

https://gnu-mcu-eclipse.github.io/

